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FOREWORD

This report was prepared under contract NAS 8-11495 and is one of a series
intended to illustrate analytical methods used in the fields of Guidance,
Flight Mechanics, and Trajectory Optimization. Derivations, mechanizations
and recommended procedures are given. Below is a complete list of the reports

in the series.
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1.0 STATEMENT OF THE PROBLEM

The problem of braking a vehicle in the vicinity of a planet having
an atmosphere, with the objective of either landing on the planet's surface
or to be captured by its gravitational field, has two distinct methods of
solution. However, both of these solutions require a force component acting
in a direction opposite to the motion to decrease the angular momentum and
the energy of the trajectory with respect to the planet. The first (pro-
pulsive) solution requires that the force be applied to the expense of the
vehicle carrying an available chemical or nuclear supply of energy. The
second relies on the gasdynamic drag while passing through the planet's
atmosphere and dissipates the vehicle's kinetic energy in the form of heat.
(The magnitude of the fraction of this heat energy which can be transferred
to the atmosphere in the process is the deciding factor in determining which
of the two methods is the more practical solution.)

This Monograph will be directed to the second of these solutions. That
is, it is assumed that a sufficiently large fraction of the vehicle's kinetic
energy can be transferred to heating the atmosphere to justify the
aero-braking solution for a given mission. Therefore, the conditions under
which the flow processes can fulfill this transfer must be insured by con-
trolling the vehicle's flight path during entry. However, if the vehicle is
manned, its crew must be protected from large accelerations; this requirement
further restricts the vehicle's flight path and results in increased level
of sophistication in trajectory control. These conditions constitute the
fundamental requirements for entry guidance.

The next logical step, in the direction of increased entry guidance
sophistication, is to require that the system deliver the vehicle to a
desired terminal state. (The terminal state can be a prescribed landing
site or a specified conic upon exiting from the atmosphere.) Thus, the
atmospheric entry guidance system has a dual role, i.e., to control the
vehicle's flight path such that the gasdynamic flow effects do not exceed
the limits of the vehicle and its crew, and to satisfy a set of terminal
objectives. To fulfill this dual role, a large number of entry guidance
schemes have been proposed; of these, a small number have been investigated
by means of a detailed computer simulation, and an even smaller number, by
actual flight test. Even so, there is an extremely large amount of material
available and it is necessary to restrict the scope of the investigation so
as to provide the maximum of insight into the problems of greatest interest.
For this reason, no consideration is given to the control of steep ballistic
entries or orbit decay trajectories. With these special cases omitted, it
is safe to say that an open-loop approach to the entry guidance problem, in
most cases, i1s not satisfactory due to uncertainties in the atmospheric and
in the aerodynamic force coefficients. Thus, continuous (or discrete)
monitoring of the vehicle's state and a corresponding updating of control
is necessary.



It will be tacitly assumed that the entry conditions which result from
corrections made in space are such that successful aerodynamic control
within the atmosphere is possible; second, that a knowledge of the vehicle's
state is always available within a required degree of certainty; and third,
that control of the trajectory is accomplished solely by varying the aero-
dynamic forces both in, and normal to, the instantaneous plane of motion.

The first requirement dictates that the system work for all entry
conditions in the entry corridor and for any set of terminal objectives
within some portion of the vehicle's performance capability. The second
requires that the system be independent of external sources of information,
since an ionization layer surrounding the vehicle blocks radio transmission.

It is the objective of this Monograph to summarize the theories proposed
for entry guidance, to describe how they may be applied for a given vehicle
mission combination, and finally, how they compare with each other. To this
end, both explicit and implicit forms will be analyzed. The explicit forms
incliude fast-time integration and approximate closed-form flight path so-
lutions. The implicit theories given are all linear perturbation guidance
laws differing in the criteria used to calculate the gains, and the method
used to generate the reference trajectory. A summary of the techniques used
in the Apollo and Gemini entry guidance is included for illustrative purposes.
The Monograph concludes with a discussion of methods used to apply these
theories, for both supercircular and subcircular entry velocities,



2.0 STATE-OF-THE-ART

2.1 PHILOSOPHY OF ENTRY GUIDANCE

Numerous methods have been proposed for gulding the flight of an entry

vahiclae nrovided with the cansgbility for aercdvnamically alterine its tra-
Ve .LbJ.c pL OV1Gea widii Tne Capavlalvy iUl aClUWylQiidilgidy Q4 uTld dlip SV Ui

jectory. The basis for these methods include the following techniques:

. on-board calculation of future trajectories using
approximate expressions

. storage of trajectories and control gains
. on-board fast-time integration of future trajectories

The majority of the guidance schemes in the literature use one or more
of these techniques in a given application. Most of the schemes, however,
employ only one of the methods listed. The use of both stored trajectory
data and on-board calculated reference solutions enjoys current popularity,
and is described in its Apollo application. Certain promising combinations,
such as a composite mechanization utilizing closed form approximate
expressions with stored control gains, have not yet been investigated No
papers on fast-time .J.nuegzd.u.l.uu guiud.w.c have been puu.u.bucu. in the guiuduuc
literature in recent years., This lack of emphasis is most likely due to the
extreme sensitivity of the integration to variations in aerodynamic control
and initial conditions at near-circular and supercircular orbit velocities.

At the time of this writing, entry guidance laws have not been demon-
strated to be as amenable to sophistication and optimization as have boost
and space guidance. This observation is partly the result of the vehicle/crew
limits, (which play an important role in the steering law selection process),
and partly the result of unavoidable buildup of relatively large inertial
measurements errors. A third probable reason is that the mathematical form
and the point mass equations of motion are complex when aerodynamic forces
are included. Thus, the current guidance philosophy is not to optimize a
steering law in the sense that the closed-loop "footprint" is maximized.
Rather, the accuracy and reliability of the system over restricted, opera-
tional performance limits is considered to be more important.

This subsection has been prepared to place the steering law selection
in its proper perspective with other entry systems design problems.
Accordingly, the steering objectives, the steering objective selection logic
(when multiple objectives are involved), the navigational and other measure-
ment data available, and the implications of the vehicle/crew limits on the
guidance problem will be described. The secondary purpose of this dis-
cussion is to introduce the nomenclature and terms used in the theory and
applications subsections.



2.1.1 Steering Objectives

In general, missions incorporating an atmospheric entry phase have at
least one of the following as entry steering objectives: a terminal location
on the planet. surface, a Keplerian conic trajectory in the upper limits of
the atmosphere, or a prescribed flight environment. Whereas the primary
trajectory control mechanism (i.e., energy dissipation rate) is not directly
related to the steering objective for the first two objectives listed, this
mechanism itself may be the objective in the case of the flight environment
steering objective. (Such is the case when the objective is a gas dynamic
environment-oriented test.) When the vehicle/crew limits are critical, the
flight environment objective is te fly within a safe and acceptable flight
envelope. This topic is discussed later.

The major portion of the papers on entry guidance are concerned with
the terminal ranging objective. This problem is primarily one of controlling
the vehicle's energy dissipation rate such that a major fraction of the
vehicle'!s energy is lost at a time when the vehicle arrives over the desired
destination. For this application, the guidance system acts as an energy
management device.

There is little written in the guidance literature on the general conic
trajectory steering objective for entry. To date, only the range performance
aspect of conic trajectory guidance has been considered important. Thus,
the terminal ranging objective will receive the major portion of the attention
in this Monograph. The theories and techniques discussed here, however, can
be applied for most applications regardless of the objective, 1f slight
modifications are permitted,

In cases where the mission has more than one steering objective and the
possibility exists of not satisfying all of them simultaneously, it becomes
necessary to assign some preference among the objectives. The logic used in
selecting the objective is dependent on which of the steering objectives is
considered most critical at the time. For example, when it is not possible
to satisfy both the terminal ranging and a restricted flight environment
objective simultaneously, the flight environment objective is usually con-
sidered to be more critical and therefore is chosen to be the governing
objective. This logic can also be expressed in mathematical form. For
instance, in the example just mentioned, let A denote the set of all possible
future trajectories starting at an arbitrary point along the entry path, and
let the symbols M, E, denote the subsets of A satisfying the terminal ranging
and the flight environment objectives, respectively. The steering objective
selection logic considers two possibilities: The two subsets intersect
M N E # @)%, or they do not intersect (M N E = @). When the subsets
intersect each other, both objectives can be satisfied simultaneously and the
steering control is selected from the intersecting trajectories. When the
subsets do not intersect, only one of the objectives can be satisfied. 1In
this case, the steering is based on controlling for the flight environment
objective alone. This logic is illustrated in the form of a Venn diagram in
Figure 1.

#} denotes the empty set
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Another way of visualizing the steering objective selection logic is
by means of a surface range performance diagram or "footprint", as shown in
Figure 2. The largest "footprint" indicates the boundary of the terminal of
the terminal points of the set A of all possible trajectories from an
arbitrary point along the entry flight path. The subset E of all tra-
jectories satisfying the flight environment objective have terminal points
which are shown bounded by the smaller "footprint" within. According to
the logic just described, the terminal point of the guided vehicle should
always be within this smaller area. To be reached then, the desired
terminal ranging objective must also be in this area.

Arbitrary Point

Maximum Safe Range
Performance Capability

Maximum Range
Performance Capability

Figure 2 The Entry Performance Footprint Showing the Ranges-to-Go

The location of the desired terminal point is expressed by resolving
the great circle arc difference between the vehicle and the point on the
planet surface in two components: a down-range-to-go component in the
instantaneous plane of motion, and a cross-range-to-go component in a plane
normal to the plane of motion. These components are also illustrated in the
figure. The projection of the actual path traversed by the vehicle on the
planet surface is generally not the same as the great circle path defined
by the two positions since varying the aerodynamic forces in the instantaneous
plane of motion varies, the surface projection range traversed. The
addition of a force component in a direction normal to the plane of motion
then makes cross-range control possible.



2.1.2 The Aerodynamic Control Vector and the Vehicle Point Mass Equations
of Motion

Since propulsive steering is not considered in this Monograph, the
sole method of altering the vehicle's trajectory is by varying the aero-
dynamic configuration which is presented to the gasdynamic flow in
directions both in, and normal to, the vehicle's instantaneous plane of
motion., A convenient way of describing the aerodynamic forces for this
purpose is by a vector function of the aerodynamic force coefficients
called the aerodynamic control vector. Before describing this vector,
however, it is first essential to briefly describe some of the coordinate
systems relevant to the discussion.

Two non-inertial coordinate systems which facilitate the resolution of
the gravitational and aerodynamic forces acting on the vehicle were chosen
for writing the point mass equations of motion for the vehicle. These
systems are described in detail and the corresponding equations of motion
derived in Appendix A. In both systems, the plane of relative motion%® is
used as a principal plane (i.e., a plane formed by any twoc of the three
orthogonal coordinate axes). The relation between the plane of relative
motion and the plane of inertial motion is illustrated in Figure 3.

v
Plane of
Relative Motion
Plane of
Inertial Motion

Figure 3 The Planes of Inertial and Relative Motion

In this figure, and the remainder of the Monograph, vector quantities are
indicated by a bar underneath the symbol for the magnitude of that quantity.
For instance, the vector symbol for velocity is V.

% Since the planet and its atmosphere are rotating with respect to inertial
space, the plane of relative motion is not, in general, the same as the plane
of inertial motion. The plane of relative motion is defined by the vectors
of position and velocity relative to the rotating atmosphere; the plane of
inertial motion, by the position and inertial velocity vectors. 1In the
special case where the flight path is in the planet's equatorial plane, the
two are identical.



The force of gravitation is assumed to act in the direction of the
planet center¥, the aerodynamic drag force acts in a direction opposite the
vehicle relative velocity vector’*, and the aerodynamic 1lift force is resolved
into components in, and normal to, the plane of relative motion with magnitudes
proportional to the cosine and sine of the vehicle bank angle, respectively.
The geometry of the aerodynamic force vectors, the relative velocity vector,
the normal to the plane of relative motion; and the vehicle itself is
illustrated in Figure 4.

L (Aerodynamic Lift Force)

D (Aerodynamic
Drag Force)

Figure 4 Resolution of the Aerodynamic Force Vectors

*The effects of planetary oblateness will be neglected.

**The effects of atmospheric winds are not considered to be important to the
development here,



The total aerodynamic force vector, denoted knrfnrno , 18 equal to the
sum of the 1ift and drag components. In the ( 7 , %, A) coordinate systems¥,
described in Appendix A, this vector becomes:

Fypro =L * 2
p(Vp - Ug)
- = [(cL s cos ) £ - (¢ 8) Ty _ (o, 5 sin b5) ﬁ](z.l.l)

where p denotes the atmosphere density, ¢,, the bank angle, and the standard
aerodynamic force coefficient notation is adopted, (CL denotes the 1lift
coefficient, Cp the drag coefficient, and S, the reference area upon which
these coefflclents are based).

Thus, terms enclosed by the square brackets in Fquation (2.1.1) are the
components of the aerodynamic control vector, denoted by the symbol c. That
is,

C;, S cos ¢B

e}
]

-Cp s (2.1.2)

-G, S sin ¢y

where bars on either side of the array in Equation (2.1.2) signify a vector
whose components are the elements in the array.

If independent control of the components of the aerodynamic control
vector is assumed, motion in the three directions can be made independent,
since the amount of aerodynamic force applied in a given direction controls
motion in that direction. However, this situation rarely exists, since only
one or two aerodynamic parameters are usually available; those parameters are
the vehicle's angle-of-attack with respect to the relative velocity vector,
and the bank angle. Variable surface area devices could be used to achieve
independent control if employed in conjunction with angle-of-attack and the
bank angle for controlling the aerodynamic configuration presented to the
flow. Regardless of the number of independent aerodynamic parameters, there
are practical limits for the aerodynamic coefficients of any given vehicle.
For instance, every vehicle will have a maximum angle of attack beyond which
the vehicle motion about the center of gravity is not considered to be stable.
This condition usually fixes a maximum trim 1ift and drag coefficient. Also,
every vehicle has a minimum value for the drag coefficient. Thus, independent
control of the motion in all three directions is rarely possible.

*The symbol N signifies a unit vector.



The eguations which relate the aerodynamic and gravitational forces
acting on the vehicle to the acceleration of a mass particle which is equal
to the total vehicle mass and which is located at the vehicle's center of
gravity are the point mass equations of motion. Since these equations are
fundamental to all studies concerned with entry performance and guidance,
they are the next topic of concern. The control equations and solutions
describing the vehicle's rigid body motion about the center of gravity will
not be considered though it is noted that motions may be important to the
operation of the guidance system if their characteristic frequencles are near
the natural frequency of the guidance loop. For this discussion, however,
the rigid body control equations are assumed to provide ideal response
characteristics (i.e., instantaneous, and no overshoot). Non-ideal response
characteristics in the control system can be considered along with un-
certainties in the atmosphere and in the aerodynamic force coefficients as
contributing factors to open-loop trajectory dispersion. These factors then
serve to reinforce the need for a closed-loop approach.

In Appendix A, the point mass equations of motion are written in terms
of vectors resolved in two non-inertial coordinate systems. The first of
these systems has its axes in the direction of the local horizontali, the
local vertical, and the normal to the plane of motion. Newton's equations
of motion written in terms of vectors resolved in this system are later used
to derive the Chapman differential equation of entry for fast-time integration
guidance /see Section (2.2.&);2 The other non-inertial coordinate system used
is fixed to, and rotates with, the relative velocity vector. This system is
called the velocity axis system, and the equations of motion written using
vectors resolved in this system are used extensively in guidance applications.
Therefore, they will be rewritten here in a form which facilitates their
integration. (The equations of motion were derived using a rotating,
spherical planet. The latitude (L) of the vehicle is measured positive from
the equatorial plane toward the positive planet's axis of rotation; azimuth
(¥) is measured from north positive towards east, and the flight path angle
(7) is defined as being the angle between the local horizontal plane and the
relative velocity vector, positive when the velocity vector is directed above
the horizon. Using this sign convention, the point mass equations of motion
in the velocity axes coordinate system are:

e

ay

“p
VR % - om 0089%3 + (—;f‘ - 2 ) cos ¥ + 2 Vy ‘Up cos T siny

+ rw, cos T (cos L cosy +sinl cosy sin ¥ ) (2.1.3)

#The direction of the component of relative velocity in the plane of the
horizon.
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dt m 2
2 .
trwy" cosT, (cos L sin¥Y =~ sinT cosh cos ¥ ) (2.1.4)
L2 A N V}f 2 ‘ ;
Vo cos Y it = m sm¢>B .~ cos Y tan L siny + 2 VR W, (sin T. cosY
- cos L cos sin¥) + 1w sinT cos T sing (2.1.5)

where w, and pu. denote the rate of rotation and the gravitational constant
of the planet, respectively.

2.1.3 Subsystems and Performance Tmplications

The entry guidance mechanizations employed, to date, do not closely
resemble their space or boost guidance counterparts, due to the presence of
control entry vehicle/crew performance limits and the effects of subsystems
which interface with the guidance. Thus, the subsystem and performance
implications on entry guidance are rightfully described in the philosophy of
entry guidance discussion before considering the details of the guidance
theories. The navigation subsystem is one of several which influence the
selection of an approach to guidance. This subsystem is important because
of the errors which it introduces in the form of imperfect knowledge of the
vehicle's state and motion of the reference coordinate system. Unfortunately,
updating of the inertial measuring unit's knowledge of position and velocity
is not possible during entry in the current state of the art; thus, if the
state vector is used for guidance, steering laws should be selected which are
insensitive to navigational errors., However, the effect of these errors can
be minimized, if other variables are employed to improve the accuracy of
error-prone components of the state vector. The entry phase of a mission is
unique in the sense that it has the widest choice of variables available for
such guidance inputs. In addition to the often used variables of position,
velocity, and time are measurements of the non-gravitational force acceleration,
the gasdynamic flow, and structural strain and temperature. A breakdown of
all variables available for entry guidance is given in Table 1.
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Table 1. Breakdown of Variables Available for Entry Guidance

Differentiated Measured Integrated
Variables Variables ~ Variables
Non-gravitational force | Non-gravitational force State vector, X (position
acceleration rate, acceleration, EAERO/m and velocity vectors)

d(Fppro/m)/dt

Time rate of change of |Gasdynamic flow measure-
gasdynamic flow measure-|ments

ments
Structural strain and Structural strain and
temperature rate temperature

Time, t

Linear perturbation guidance schemes employing state vector components
together with the non-gravitational force acceleration and acceleration rate
for reference trajectory control are common in the entry guidance literature.
Reference 14 contains a development where the use of vehicle skin temperature
rate is also suggested for entry guidance.

Another subsystem influencing the selection of the steering law is the
guidance computer itself., Such factors as storage space and timing require-
ments should be examined. However, this aspect of the analysis is considered
to be beyond the scope of the current effort.

The vehicle/crew performance limits having guidance implications can be
classified into two types: time-dependent and non-time-dependent. Time de-
pendent limits, in general, may be expressed in integral form; the integration
performed using time as the independent variable with initial and final flight
times as limits. Some examples of this type of limit include the fraction of
the total energy (heat) input to the vehicle, and entry time. Non-time de-
pendent limits may be thought of as point constraints. Some examples of this
type include maximum aerodynamic load factor (acceleration level), and max-
imum heat transfer rate. The existence of both the time- and non-time-de-
pendent limits for a given vehicle/crew combination imply that, in the process
of steering for terminal objectives, the vehicle must be in a safe acceptable
flight envelope whose boundaries are determined by the aforementioned limits.
As expected, most of the entry performance limits arise from gasdynamic flow
effects on the vehicle. A discussion of these effects, the nature of the
limits, and their transformation into flight boundaries follows.
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2.1.3.1 Gasdynamic Flow Effects

Primary among the gasdynamic flow effects are the vehicle's aero-
dynamic acceleration and heating. The aerodynamic acceleration is propor-
tional to the resultant aerodynamic force for a fixed mass vehicle and may be
separated into two factors; the first is the dynamic pressure (a function of
the vehicle's altitude and velocity). The second is the aerodynamic control
vector, whose components are varied for steerage. The proportionality of the
non-gravitational acceleration on dynamic pressure makes it convenient to
portray lines of constant acceleration on an altitude-velocity plot for a
fixed angle-of-attack vehicle in terms of lines of constant dynamic pressure.
Now, since the dynamic pressure, denoted by the symbol g (the overhead bar
does not signify a vector) is given by the expression,

p Va2 (2.1.6)

ol
I
|
i
|

!

then by substituting the exponential atmosphere model, Equation (B-2a),
another expression relating altitude to velocity for constant dynamic pressure

can be cbtained, i.e.,
2 v
h B 1n (— . '_:.'.)
P (3/ R

7
= 2hs ln ("--">
"r=0

where Vh=o = (a/ Q))%’ denotes the velocity at zero altitude for constant
dynamic pressure, and where for the sake of brevity, the symbol V is under-
stood to signify relative velocity*. Therefore, a plot of the altitude-ve-
locity relation (2.1.7) for constant dynamic pressure is logarithmic, as is
shown below.

(2.1.7)

*This notation will be employed through the balance of this Monograph.
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Figure 5 Lines of Constant Dynamic Pressure on an Altitude-Velocity Plot

The other important flow effect on the vehicle is heating. The heat
energy, dH, transferred to the vehicle in some time, dt, is expressed as some
fraction, Cy, of the kinetic energy of the gas flow intercepting the vehicle

in that time, i.e.,

It
)

{ YAL) -

Thus, the heat transfer rate to the vehicle is

L s (2.1.8)

dt : 5

Where the heat transfer rate coefficient, CH’ must be less than one (from the
conservation of energy). Since the rate at which the aerodynamic forces do
work in converting kinetic energy to heat is given by

#The dot notation in the following equation is used to indicate the vector
dot product operation.
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and, since this conversion results in heating the atmosphere and the vehicle,
the ratio CH/CD also must be less than one. This ratio represents the portion

of the work which goes into heating the vehicle. In Reference 4 the heat
transfer coefficient is broken down into three components: a convective com-
ponent strongly dependent on the nature of the boundary layer, a radiative

due to radiation of the hot gas in chemical eanilibrium
L A LA s i+ AL AL Buu ‘i Wl ANl QL V\.il-‘_l._& 4.

F=Y
vl (N2 S A=y § 1O V]

and
ibrium, and a
nonequilibrium radiative component. It suffices to say that the heat transfer
coefficient is not a simple function, and must take into account the effects
of body geometry, density, atmospheric constitutes, velocity, and the nature
of the boundary layer.

ocommnnent
Componenu

The total*® heat input to the vehicle on a trajectory is the time integral
of the heat transfer rate dH/dt, thus

.l.
A 3
17
Ho o= c _p 7S gt (2.1.10)
H 2
T
]

where the subscripts "i" and "f" indicate the initial and final atmospheric
flight times. This integral can be transformed into a velocity dependent
integral for small flight path angle trajectories by the differential
transformation:

dt av_
dt = av av = - (D/m)
m dv
-, m.  dv_ 2.1.11

Substituting (2.1.11) for the differential time into (2.1.10) and changing
the 1limits of integration then yields

vy
H=f
Vf

#The resultant heat input is always less since it accounts for the reradiative
heat transfer from the vehicle to the surrounding atmosphere.

(@]

mV 4V (2.1.12)

5|
SR

15



Thus, for constant mass, the total heat input can be expressed as a fraction
of the initial kinetic energy, i.e.,

m \7.2 .
0 o= 7 i (2.1.13)
2

where 7 1s a weighted mean value of (CH/CD) given by

= ¥ b
mo= 2 f e "(Vi) (2.1.14)

vf/v .
1
2.1.3.2 Vehicle/Crew Limits

Several of the vehicle and crew limits have important implications for
entry guidance; some of these factors are: the vehicle structural load limit,
the aerodynamic heat transfer rate limit, the maximum total heat input to the
vehicle, maximum entry time, and the crew's tolerance to acceleration.
However, not all of these limits are used to define the safe flight regime.
For instance, in most manned vehicles, the crew's tolerance to acceleration
(aerodynamic load factor) is a more limiting factor than the structural load
factor; thus, a guidance law satisfying the former would always restrict the
trajectory to satisfy the latter. The aerodynamic load factor is defined in
terms of the ratio of the resultant aerodynamic force to the weight of the
vehicie, i.e.,

| “azme | "% S

n= —-— = 0§ (2.1.15)

where Cp denotes the resultant aerodynamic force coefficient given by

2 2 2.3
+Cp” + Cy )

)
1

(Cp,

2
L

N

or, for a vehicle trimmed to zero yaw angle, Cy =0, and C (c,  + CD2)

R

Assuming the resultant aerodynamic coefficient is constant, the propor-
tionality of the aerodynamic load factor to dynamic pressure makes it con-
venient to portray lines of constant load factor as shown in Figure 5. This
is often the assumption used for fixed angle-of-attack vehicles.

Since the heat~protection systems for most entry vehicles are either
ablative or reradiative in their method of operation, the entry vehicle will
most likely be limited to either a maximum total heat input Hﬁax or a
limiting value of heat transfer rate dH/dt . This limitation arises since
the mass loss due to ablation is roughly proportional to the total heat input
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due to the fact that the reradiative structure, whose operation depends on
the radiating of heat away from the skin, is temperature~limited.

The remaining limit to be considered is that of the crew. The systems
implications of this limit, in the case of earth entry, are many; however,
only the guidance aspect will be considered. Reference 5 contains data
indicating that pilot's tolerance to acceleration may be expressed as a
maximum value for the product Gt where m is an exponent whose value is de-
pendent on the pilot's orientation relative to the imposed acceleration, and
t is the time spent at the given value of G. A more general empirical
approach can be used to formulate crew limits in terms of a maximum value
for the .1.uuc5.|.o.l

+.
in)

f A" At,

1".
i

This criteria is called the acceleration dosage. However, since neither of
these two approaches is amenable for guildance purposes, a limiting value of
the nondimensional aerodynamic acceleration is often used to indicate the
pilot and crew limits.

2.1.3.3 Atmospheric Exit Boundaries

One factor in determining the flight envelope available for trajectory
control is the consequence of the vehicle inadvertantly exiting® from the
atmosphere. The controlled exit maneuver, on the other hand, is a useful
maneuver to extend the range performance of the vehicle after the initial
entry. However, atmospheric exits can result in prolonged flights which may
exceed certain system limits and which can result in large range errors.
Thus, to prevent unwanted supercircular atmospheric exits, those sets of
flight conditions, (namely altitude, velocity, and flight path angle) which
always result in an exit condition for a given vehicle, must be determined.
This objective can be accomplished by integrating (numerically or otherwise)
a family of trajectories for a series of initial altitudes, velocities, and
flight path angles, employing the vehicle's full negative 1ift capability.,
In this manner, the region of (h, V, ¥) space where the vehicle exits, re-
gardless of the degree of control exerted, may be found for any given con-
figuration. The boundary of this region in (h, V, ¥) space defines an
atmospheric exit surface for that vehicle which can be expressed in the
following mathematical form:

Foo }“{AY (‘7’ 'y\ (2.1.16)

*Atmospheric exit is defined to occur when the vehicle reaches a minimum defined
value of aerodynamic acceleration with a positive altitude rate. Other defini-
tions (e.g., based on altitude) of the exit condition are also used for
convenience. In any study any such reasonable definition may be adopted, pro-
vided the definition is consistent in actual usage.
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A sketch of the atmospheric exit surface showing its general properties
is given in Figure 6. The property of this surface can be summarized as

follows:

Figure 6 The Atmospheric Exit Surface in h, V, ¥ Space

for any velocity and flight path angle, there is an altitude hy,y given by
the relation (2.1.16) such that for h > h atmospheric exit gﬁways occurs.
In the figure, lines of constant flight pg%§ angle have been drawn on the
surface to show its curvature. In a later section, it will be shown that the
atmospheric exit boundary line for Y = 0° corresponds to the full negative
1ift equilibrium glide line for the vehicle. Tn Appendix C, approximate
relationships are derived for the limiting values of altitude rate to avoid
the supercircular atmospheric exit and to prevent the vehicle from exceeding
a given maximum load factor.

Another set of parameters which is convenient for analyzing entry tra-
jectories and synthesizing guidance concepts is the set (G, V, dG/dV). This
set consists of the nondimensional aerodynamic load factor, the velocity, and
the rate of change of aerodynamic load factor with velocity. A large part of
the appeal of this set is due to the fact that the members are easily measured
quantities. However, this set also has the advantage of combining altitude
and velocity into a variable often used to define flight limits. Also, by
interpreting flight limits in terms of limiting values for the slope dG/dV
inadvertant atmospheric exists can be avoided and limiting load factors will
not be exceeded by monitoring a G-V plot of the trajectory and controlling
accordingly. Reference 6 contains a development of an entry monitor system
for maneuverable vehicles which employs this set of flight parameters.
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The equivalence of the two sets (h, V, ¥ ) and (G, V, dG/dV) can be shown
for vehicles having constant aerodynamic force coefficients. The aerodynamic
load factor is related to altitude and velocity for a given atmospheric model
(B~2) by the expression

2
ryS p exp (-Bh) V

n=0n(h, V) = u 2 (2.1.17)

Thus, the total differential of G is given by

ar =" dh + < av

The total rate of change in G with velocity for constant aerodynamic force
coefficients is now obtained as:

dé _ o6G ]
av oh dV TV
Q 2 a)
c, 8 V¥ dn dt  Cp S

= o (=B) g exp (-Bh) — T v Tw P e (-Bh) V

CR S V2 V sinYy C, S
= - (=B) p exp (-Bh) — R p exp (~-Bh) V 8
W ° 2 - D/m w o (2.1.18)
CR S £ m
—— g, exp (-Bh) —— V siny = V
W CD S

where the small flight path angle and nonrotating atmosphere upproximations
were used in substituting for the term (dt/dv). Therefore, the slope of the
aerodynamic load factor versus velocity plot has one component proportional to
V sin ¥ ( or h, the altitude rate) and the other proportional to velocity,
as shown in (2.1. 18) Equation (2.1.18) correlates the three variables

(h, V, ¥) with (dG/dV) in the sense that, given any three, the remaining
variable is determinmed from (2.1.18). Therefore, the equivalence of the sets
(h, V, ¥) and (G, V, dG/dV) has been shown. The atmospheric exit surface
illustrated in Figure 6 may then be transformed into a surface in

(G, V, dG/dV) space’, if desired.
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2.1.3.4 The Safe Acceptable Flight FEnvelope

In the last few pages, the vehicle/crew limits and the concept of a
limiting flight condition surface in 3-space have been introduced. It now
remains to transform these limits into the surface of an acceptable flight
envelope within which the entry vehicle must fly. The non-time-dependent
limits can be transformed directly; the time—dependent limits are transformed
by introducing an intermediate variable more directly related to the set of
flight conditions. For the non-time-dependent 1limits, such as aerodynamic
load factor and heating rate, limiting surfaces in altitude-velocity-flight
path angle space are obtained by backwards integration of trajectories from
a flight limit tangency condition using the maximum vertical 1ift capability.
In the case of time-dependent limits, such as maximum entry time and heat
input, these limits can very often be related in an approximate sense with
entry range or a non-exit condition.

In any case, it is sufficient to say that the surface (a function of all
flight parameters) incorporating all vehicle/crew limits constitutes what
will be referred to as the flight envelope. This envelope may be shown in
the (h, V, ¥) or (G, V, dG/dV) three-dimensional spaces, or in two-dimensional
form as illustrated in Figures 7 and 8. In these figures the atmospheric exit
surfaces (indicated by lines of constant flight path angle in the h - V plane,
and lines of the slope dG/dV in the G-V plane) are used to define a portion of
the flight envelope., Other flight limits shown are in two-dimensional form
and include lines of limiting aerodynamic heat transfer rate and acceleration.
The effect of the time-integrated vehicle and crew limits, such as the total
heat input limit can be better shown, however, on a plot of the vehicle range
capability if so desired. Thus, the implications of the vehicle/crew limits
on guidance are: to guide the vehicle into the acceptable flight envelope and
to maintain the vehicle's position within the envelope.
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2.1.3.5 Entry Corridors

In the preceding section, the geometry of the vehicle's acceptable flight
envelope was discussed, It was shown that these limiting flight surfaces
result since only a limited amount of trajectory control is available tc the
vehicle. These surfaces, when extended to the upper limits of the atmosphere,
enclose a region in which the vehicle must fly during the initial penetration
of the atmosphere (For earth entry, the initial penetration is defined to
occur when the vehicle passes through the 400,000 foot altitude level with a
negative altitude rate. )

For most applications, the initial entry velocity vector is determined to
a great extent by mission considerations. However, for most missions, the
entry velocity in magnitude is nearly fixed. Thus, the initial flight path
angle must be limited in order that the vehicle can safely maneuver into the
acceptable flight envelope. The variation in the acceptable initial flight
path angle depends mainly on the amount of 1ift made available for the initial
entry maneuver; the largest entry flight path angle is determined by a
maximum-vertical-1ift trajectory which is tangent to the lower altitude
boundary of the flight envelope. This condition is referred to as the
tundershoot" boundary. The shallowest entry flight path angle is usually
determined by the atmospheric capture requirement. This condition determines
the "overshoot" boundary. For initial flight path angles shallower than
this value, atmospheric exit results. The overshoot flight path angle is
identical to the angle associated with the atmospheric exit boundary line
in the h-V plane which passes through the point determined by the initial
entry altitude and velocity.

By extending the trajectories associated with the undershoot and over-
shoot flight path angles as conics in the assumed absence of an atmosphere,
the difference im the implied periapse distances can be determined. This
extension is illustrated in Figure ¢ for the case where the two radii are
aligned in a common direction. The corridor between the undershoot and
overshoot conics (shown in the figure), is referred to as the entry corridor.
Besides aerodynamic lift, the other factors which influence (for the worse)
the size of the entry corridor include the vehicle's limited control response
time and atmospheric deviations.

*This interface altitude is convenient for specifying entry flight path
angle limits although operationally the entry phase is normally considered
to start upon reaching a certain load factor.
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2.2 GUIDANCE THEORIES
2.2.1 Summary

In the preceding section, the implications of the entry vehicle/crew
performance limits were shown to generally result in a dual objective for the
guidance system: i.e., to restrict the flight within an acceptable flight
envelope, and in the process, to guide the vehicle to a desired destination.
The techniques proposed in the literature to satisfy these objectives are
basically of three types: linear perturbation guidance employing on-board
calculated reference trajectories, linear perturbation guidance employing
stored reference trajectories and optimal gains, and fast-time integration
guidance’®,

Linear perturbation guidance is a method whereby the steering command
is formed by a summation of terms linearly proportional to the deviations
(perturbations) of the actual trajectory from a reference trajectory. 1In
the first perturbation guidance technigue mentioned, the reference trajectory
is calculated on-board the vehicle during entry. In the second, the
reference solution is precalculated, (usually on the ground), and the results
stored in a memory device for use during entry. An example of a linear per-
turbation entry guidance law suggested for guidance in the plane of motion
is taken from Reference 12, i.e.,

L »
5) + X Ah+K2AA+K3 AR

where the differences in altitude rate, Ah , horizontal acceleration, AA ,
and surface-arc range AR , are evaluated at the same velocity value for the
actual and reference trajectories. The proportionality factors, in this case,
given by Xy, Ko, K3, are called the guidance gains.

*Linear perturbation guidance employing stored reference trajectories and
optimal gains is an implicit steering technique. That is, a steering law
which generates a command on the basis of deviations in the vehicle's state
from a calculated solution. Both the flight envelope and the terminal
steering objectives can be satisfied simultaneously with implicit steering
if the proper reference solution and gain selection criteria is used.
Explicit steering, on the other hand, is a process whereby the steering
command is calculated on the basis of a prediction of the vehicle's future
path. This technique is used in fast-time integration guidance; linear per-
turbation guidance employing on-board calculated reference trajectory in
effect constitutes a prediction of a future path.
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The simplest form of linear perturbation guidance law emp}oys gains w@ich
do not vary during the time the law is in effect, Constant gain pertupbat;on
guidance may be used when the on-board calculated reference trajectory tech-
nique is employed. By restricting the gains to constant values, however,'the
full capability of the linear perturbation guidance method cannot be realized.
This fact should be apparent since the constant gain restriction ngglects the
changing dynamics of the problem; since the sensitivity of the t?ajectory to_
perturbations is strongly dependent on where (what time or veloclty) the quLa—
tions are introduced. Thus a perturbation guidance law which permits variable
gains can account for these changing sensitivities during entry. -

The second linear perturbation guidance technique is more amenable to
variable gains since a large number of calculations is often required to
calculate proper (or optimum) gain functions. However, the validity of the
optimum gain functions is predicated on the assumption that the resultant
trajectory lies in the neighborhood of the reference solution. This
assumption arises because the derivation of the gain functions employs a
Taylor series expansion of the equations of motion which is truncated after
the linear terms. With the aid of this linear error propagation model,
entry guidance gain functions will be derived which satisfy one of two
criteria: first, to null deviations in terminal objective with minimum
control exerted, and second, to minimize deviations in a function of the
terminal objective, errors along the path,and the control exerted. Indeed,
these criteria are different and neither includes the other as a special case.

Regardless of when the reference solution is calculated, it is always
selected to satisfy a desired performance characteristic. In the case of
precalculated solutions, the reference trajectory is usually optimized in the
sense of least heat input, least sensitivity to errors, etc. For the on-board
calculated approach, the reference trajectory often consists of a closed-form
patched solution with the segment end conditions adjusted so as to satisfy an
overall entry range requirement. Unless a large number of trajectories are
stored, the latter technique is the only reliable entry guidance technique
developed which enables a wide range of terminal objectives to be attained.
Although the fast-time integration guidance method offers flexibility in
terminal objectives, the extreme trajectory sensitivities at orbital and
super-orbital velocities makes the reliability of this method questionable
when employed with faulty input data. Therefore, perturbation guidance
employing on-board calculated reference trajectories appears to be the most
promising of the entry guidance techniques developed to date. Its theory
follows.

2.2.2 Linearized Perturbation Guidance Employing On-Board Calculated
Reference Trajectories

In the summary, the on-board calculated reference trajectory technique
was introduced as the most promising entry guidance technique since it has
the ability to adapt to a wide range of terminal objectives. However, since
no attempt to date has been made to calculate a corresponding set of optimum
linearized guidance gain functions on-board (to the knowledge of the authors),
this development will emphasize the calculation of the reference trajectory.
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Thus, no attempt will be made to derive a constant-gain selection criteria.
Instead, it is believed that this problem lends itself more to an empirical
solutlon. Other alternatives, such as the use of optimum linearized guidance
gains for the patched calculated reference trajectory, so as to permit rapid
calculation of optimum linearized gain functions, remain to be investigated.

Although it is not possible to integrate the point mass equations of
motion for atmospheric flight in an exact closed form, approximate solutions
which are sufficiently accurate for reference trajectory guidance applications
may be developed if the vehicle is assumed to be controlled to follow certain
flight paths. However, even these restricted solutions are, in most cases,
limited to an integration of the dynamics in the plane of motion. The ex-
ceptions to this are the minor circle turn solution described in Reference 7
and the lateral motion solutions of Reference 8. The integration of the
equations of motion for various restricted flight modes is given in Appendix C;
however, the assumptions which make the analytic integration possible and
approximate are relevant to the discussion of entry guidance and will be
listed here. They are:

. The planet and its atmosphere are non-rotating and spherical in
shape

. The flight path angle is restricted to small values (usually less
than 10°) so that its cosine is approximately one and the com-
ponent of the gravitational attraction along the velocity vector
is small in comparison to the aerodynamic drag force

. The exponential atmospheric model is valid

. The height of the atmosphere is small in comparison to the planet
radius so that the vehicle's distance from the planet center is
approximately the same as the planet's radius during atmospheric
flight

These assumptions are definitely restrictive. Thus, the flight path
solutions integrated in Appendix C are not valid for steep ballistic entries
or entries into deep, rapidly rotating atmospheres, such as encountered about
the planet Jupiter. The effect of planet rotation and a non-spherical shape
can be compensated for in the guidance logic, by estimating the total flight
time and the average component velocities. This modification is discussed in
Reference 9 for an application using the equilibrium glide closed form
solution. The validity of the atmospheric model has already been discussed
in Appendix B. The validity of all the assumptions should be re-—examined for
any given application of the theory to a specific vehicle and mission, however.

With these assumptions employed, the point mass equations of motion in the

veloclty axis system are reduced to the following simplified set:

av . _D (2.2.1)
m
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P = p exp (-Bh) (2.2.11)

Since the planet and its atmosphere are assumed to be non-rotating, the
relative velocity and the relative plane of motion discussed in (2.1.2) are
the same as the inertial velocity and the inertial plane of motion®. This
assumption also means that the initial placement of the plane of motion can be
taken to coincide with the fundamental plane used in the development of the
equations of motion (see Appendix A), thereby enabling simple expressions for
the vehicle down-range and cross-range traversed to be written. From (2.2.6),
the down-range traversed can then be found from the expression,

V sin ¢
X = f — (2.2.12)

Y = f Vecos ¥ dt (2.2.13)

*Note, however, that the subscripts indicating relative velocity were pre-
viously deleted.
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where ¥ is now the heading difference measured from the initial plane of the
motion. Finally, the surface arc range expression becomes

t

R =f Vadt (2.2.14)

t.
i

Before preceding, however, it is noted that the vehicle's velocity is a
better indicator than time of the terminating condition of any flight path;
thus, the integration in the Appendix is performed and the trajectory equa-
tions written, using velocity as the independent variable®. To facilitate
this change in variables, the chain rule for differentials is applied, i.e.,
under the assumptions made,

dt dv
dt = — Qqv S — (2.2.15)
av D/m

Further, the aerodynamic coefficients are taken to be constants although this
procedure is not necessary to the integration. The generality of having the
coefficients as fumrctions of velocity, however, would be accomplished at the
expense of added complexity in the prediction equations.

The flight paths having approximate integrals derived in Appendix C
include the following flight modes: the equilibrium glide solution, the
constant flight path angle solution, the constant altitude rate solution, the
constant aerodynamic load factor sclution, and the constant rate of change of
locad factor with veleccity solution. Also given in the Appendix is the
exo-atmospheric solution. TFor each of these restricted flight mede, all per-
formance variables in the plane of motion are given as functions of velocity
(the cosine of the required bank angle to control the vehicle along the par-
ticular restricted path and the surface arc range arc included). To date, no
simple expressions such as those derived in Appendix C are available for the
lateral range traversed or heading angle.

#*In many cases, it becomes convenient to use the ratio of velocity to circular
orbit velocity as an independent variable in writing the prediction equations.
The value of this nondimensional number is denoted by the symbol, V, where
V = V/VoIr and where the circular velocity in the atmosphere is assumed

constant (i.e., V = /r_). This last approximation follows from the

CIR P p
shallow atmosphere assumption.
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Since a typical entry trajectory is divided into reasonably distinct
parts (see Applications), it is natural to consider the total guidance
problem as the sum of a finite number of guidance problems each of which is
addressed to a particular closed form reference soclution. Gross control over
the steering objective is, therefore, established by dividing the reference
trajectory into segments for which closed form solutions are available and
adjusting these segments to yield the steering objective desired.

In order to form a continuous reference trajectory, it is necessary,
however, to match the end conditions of the respective segments, with respect
to their altitude, velocity and flight path angle¥®. Generally, however, it
is not possible tc match together any two of the first four flight paths
integrated in the Appendix without losing most of the flexibility in objective
of the overall combination., For this reason, a reference solution is given
in Appendix C which is used for controlling between two trajectories end
points having the same velocity but different values of altitude and altitude
rate (or flight path angle). This trajectory is the constant-velocity
transition solution. The reader is advised to consult the Appendix for the
assumptions used in its derivation and a description of the utility of this
solution in other guidance applications.

To compensate for the assumptions used in the integration of the re-
spective reference trajectory segments and the actual trajectory's deviations
resulting from density fluctuations and control errors, the overall reference
solution used for guidance can be recalculated at any number of points along
the actual entry path. This capability offers fine control over the steering
objective,

A summary of the closed form reference solutions integrated in
Appendix C is given in Tables 2 and 3. To illustrate their use, the in-plane
terminal range problem will be considered using a linear perturbation
guidance technique along with the following closed form solutions as reference
trajectories: constant altitude, the equilibrium glide, and the constant
velocity transition. In this case, the desired objective is a terminal
in-plane, (or surface arci), range-to-go, denoted by Rypp, and a terminal
velocity magnitude, denoted by VTER' If the existing velocity is denoted by V,
then the total-surface arc range traversed by the vehicle in the constant
altitude flight mode 1s, from Table 2,

C v

1l R 1 A

R=" (C_ E—) V2 1n <V ) (2.2.16)
g D i TRANS

p h=const

where Voppans is the end (transition) velocity of this segment. Also, from

Table 2, the surface arc range for the equilibrium glide segment is given by

the expression

#1f lateral range prediction expressions are available, vehicle heading or
azimuth is added to this list.
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2
L 1-7v
B =(Ec08¢ )EQUE r 1n (—%) (2.2.17)
p _
1=V

Adding Equations (2.2.16) and (2.2.17) and equating the sum to the desired
terminal range, Rrgp, then enables the transition velocity to be determined
for a given value of (L/D cos ¢ EQUIL . Thus, the end points of the

reference segments can be flxed and the reference solutions specified (for
all values of velocity).

An example of a linear perturbation guidance law which may be used for
this problem is given by

D D
cos py = (cos dp )opn T Ky [ hRFF] + K (—I;) - (;)R (2.2.18)
FF

where the reference values are given as functions of velocity in Tables 1 and 2
for the constant altitude, equilibrium glide, and constant-velocity transition
reference segments,

A more general guidance law, applicable if in-plane and out-of-plane
range prediction expressions were available for restricted flight paths, is
given by the following set of equations:

L . =(% H{"Ql.1 h-h +
D %°°%p (D COS¢B>REF 1) oR REF

(2.2.19)
D D L
ar | 2- (2) + 8R L (L)
s L™ TEFL e LM TR
p sinég (D sin ¢ )REF * Kz{%{i [‘ﬁ - wREF]
(2.2 20)
+ 3L [0 - (D dY [L (L
Bk @) BE )

where Y denotes lateral range.

#*The constant velocity transition solution is wused only for control purposes
during the transition from the constant altitude to the equilibrium glide
segments. Thus, its surface-arc range contribution is not congidered.
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The bank angle and angle: of attack commands are then determined from
(2.2.19) and (2.2.20) by,

L .
= Sslin
-1 D ¢B
-~  tan (2.2.21)
b I
= COS
B commanp 5 by
o - a(% (2.2.22)
COMMAND COMMAND

where

Ml

B [ onoa)? o (et ] 122

For certain closed form command reference solutions, the partial de-
rivatives can be approximated by analytical expressions. Other solutions
require computer runs using perturbation eguations to determine these values.

2.2.3 Linear Perturbation Guidance Employing Stored Reference Trajectories
and Optimal Gains

The second linear perturbation guidance technique, employing stored
reference trajectories and optimal gains, is one well suited to missions
where the steering objective and initial entry conditions are known with some
certainty beforehand. This knowledge permits the reference trajectory and
a set of optimum linearized gain functions to be calculated at an earlier and
less critical time. The word '"linearized” is used since no attempt will be
made here to calculate optimum gain functions in the general sense (i.e.,
for actual trajectories not in the neighborhood of the reference trajectory).
Thus, the optimality of the gain functions does not hold if the actual tra-
Jectory is not near the reference solution. Optimality, as discussed here,
will apply to gain functions satisfying one of two criteria, assuming of
course, the validity of the linearized trajectory error propagation model.
These criteria and the corresponding gain solutions are primarily the work of
Bryson and Denham who developed "Multivariable Terminal Control for Minimum
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Mean Square Deviation from a Nominal Path," (Reference 18) and Kovatch in
his paper, "Optimal Guidance and Control Synthesis for Maneuvering Lifting
Space Vehicles" (Reference 17).

The development of the two concepts will employ the state vector for
trajectory control, The concept is not altered, however, if other measurements
are used. Indeed, the substitution of other observations in a given
application would merely alter the system's accuracy..

2.2.3.1 The Linearized Differential Equation of Error Propagation for
Atmospheric Flight

Fundamental to the synthesis of the optimal entry gain functions is the
linearized differential equation of error propagation for atmospheric flight.
For this reason, the development of this equation is considered first.

The state vector is, for the present discussion, defined to be a vector
whose components consist of the vehicle's position and velocity components.
These components are arranged in column form as follows,

I

X =
- v

where the symbol X denotes the state vector. 1In this development, time will
be used as the independent variable and the nominal trajectory used for
guidance will be denoted by the function X = X,(t). The aerodynamic control
vector for the vehicle will be given by QN(t). Thus, a linear perturbation
guidance law using position and velocity deviations for control can be written
as

A(; (2.2.2L)

1l
-
>
14

where

1s the deviation in the control vector from the nominal solution evaluated

at the same fixed time. The advantage of using the state vector in lieu of
the position and velocity vectors is shown by the relative simplicity in form
of the guidance law (2.3.24). A more general form of control is possible if
higher order terms are included, e.g.,

C = L AX + ZMAXAX + . ... (2.2.25)
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where the superscript T denotes the transpose of the matrix, or vector in this
case and is a (3 x 6) matrix of quadratic gains. The determination of quad-
ratic and higher order gains in the system (2.2.25) to provide terminal
control and preserve the optimality of a nominal solution is described in
Reference 15. Only linear perturbation gains will be considered in this
development, however.

Since the time derivative of the state vector is a column vector con-
taining the velocity and acceleration vectors as components, i.e.,

dr

dt ¥
q = =
dt

dv

dt A

The equations of motion, derived in Appendix A, including the auxiliary
velocity relations may be written in a functional form which includes all
dependencies as:

& | &

= F(X, ¢, p ,t) (2.2.26)

The symbol F denotes a vector function, and the contents of the parentheses
indicate that F is a function of position, velocity, the aerodynamic control
exXerted, the atmospherlc density and time. The atmospheric density encountered by
the entry vehicle, however, can be resolved into two components: one, due

to the altitude of the vehicle in a standard atmosphere used to generate the
nominal trajectory, the other due to density deviations from this nominal

value. Thus, the actual density may be written as

= h)+ &
P ps( p
where pe(h) denotes the altitude-dependent standard density value and,
dp , the deviation from this value at the time of measurement.
Now, since the actual trajectory is assumed to lie in the neighborhood
of the nominal solution, the vector function (2.2.26) can be expanded for any

fixed time in a Taylor series in the variations in the dependent variables
X, C, and p about their nominal values.
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Thus

s & of - aE -C ag 6 i (2.2.27)
—_— ()_L LN) a—g—(g _N) ap P+ ....

= - 4 =

dt dﬁy

where the dots indicate the presence of higher order terms in the differences
(X-Xy), (C-Cy), and 8p . Equation (2.2.27) relates the deviations in these
variables to the derivative of the state vector for the case where only the

linear terms are considered. Thus, the differential equation describing the

system can be rewritten in the form,
AX = F AX+G AC +H 8p (2.2.28)

where

oF
F = 5% A six by six matrix of partials
= which is a function of time
oF i . .
G = —= A six by three matrix of partials,
BQ_ also a function of time
o oF . .
H o= — A six by one vector of partials,
dp also a function of time

The system of six first order linear differential equations indicated by
(2.2.28) is called the linearized differential equation of error propagation
for atmospheric flight.

When written in the form
AX - FAX = GAC + H &p (2.2.29)

the system is observed to have a dependent variable AX, independen? varia?les
time, the aerodynamic control, and a forcing function (the atmospheric density
deviations). The analysis and solution of systems of the form (2,2.29) are
described in most intermediate, ordinary differential equations texts (see

Reference 16).
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If it is desirable to account for the effects of density deviations,
acceleration feedback can be used to measure the extent of the deviations.
Solving for the density deviation in Equation (2.2.28) gives

HL AX-H' F AX - H G AC
5p = = = (2.2.30)

HT H

where the product, H H , s a scalar. Knowledge of the acceleration
deviations as well as the state vector and the aercdynamic control exerted,
thus enables the approximate density deviation to be determined from (2.2.30),
if aerodynamic force uncertainties are not considered to contribute. A
prediction of future density deviations to be encountered by the vehicle can
be made if the density deviation history plotted from (2.112) can be projected
for the future altitude range the vehicle flies through. Either a linear
extrapolation of the measured data valid for limited altitude intervals, or
an atmospheric density deviation model can be used for this purpose.

2.2.3.2 Steering Objectives and the Termination Condition

Farlier in the Monograph, the general objectives of the entry guidance
system were stated to be, to steer the vehicle within the acceptable flight
envelope, and to reach a desired terminal state. Linear perturbation guidance
will satisfy the first of these if the nominal trajectory is chosen properly
and if the vehicle is restricted to a sufficiently small neighborhood of this
solution. Thus, in most of the linear perturbation entry guidance discussions
in the literature, the terminal objective is considered to be the stronger of
the two objectives, and the guidance gains are selected accordingly. The
linear perturbation guidance law of Reference 17, however, suggests that the
guidance gains may be determined so as to restrict the trajectory's deviations¥
from the nominal along the way. This law is, thus, better adapted for
entry guidance since it is meant to restrict the trajectory to fall within an
ervelope, as well as terminating at a desired destination.

If an excatmospheric flight phase follows, the perturbation entry
guidance segment, the terminal steering objective is a set of six exit con-
ditions determining the desired Keplerian conic, The state vector (i.e.,
the position and velocity vectors) can, therefore, be used as a steering
objective in this case. The condition determining the actual value of the
state vector at the final state is called the terminating condition. For the
Keplerian conic terminal ebjective, the terminating condition is the upper
limit of the atmosphere, and may be expressed in terms of altitude, density,
or a limiting value of the dynamic pressure. The vector symbol ¥ and the
scalar symbol € are used to respectively denote the steering objective and
the terminating condition. If an exoatmospheric flight phase is assumed to
follow then the steering objective, ¢ = X, and the terminating condition

Q = qyy are appropriate. If a surface recovery zone and some fraction of

the initial entry velocity remaining is the desired objective, then

*both in the state and control vectors
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(2.2.31)

o o<W

or - -
X
(V2 _Y lfp) (2.2.32)

2
ﬁfh

<
I

are valid steering objectives and Q = hyrn is a valid terminating con-
dition. Both of these functions for surface recovery include the down-and
cross-ranges. In the first of these functions, both a terminal altitude and
a velocity are desired; whereas in the second, only a terminal value

of the remaining vehicle energy is specified. Therefore, the vector Y can
contain as many as six, or, as few as three components for entry guidance,
depending on the guidance phase at that time and the nature of the recovery
method following. The terminating condition for entry, Q , is always an
altitude dependent scalar function.

2.2.3.3 Performance Measures and Gain Selection Criteria

In the same way that a positive definite measure of distance between two
position vectors ry and rp is given by the expression:

where Ar = (r; - ry), and the dot indicates the vector dot product operation,
so can the deviation of a trajectory ( Ar and Av) from a nominal
solution be determined thus,

As® = AX' AX (2.2.33)

However, if position deviations are assumed to be more critical than those in
velocity, or vice versa depending on where along the trajectory the deviation
occurs, the components of the summation making up the dot product must be
multiplied by time-dependent factors to reflect this dependency. Thus
(2.2.33) is generalized as follows:

As®=3 AX Vv AX (2.2.34)
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where V is a 6 x 6 symmetric matrix of time—dependent weighting factors.
In a similar fashion, the amount of control exerted can be measured as

ACT =3 AcT U Ag (2.2.35)

where U 1is a 3 x 3 symmetric matrix of time-dependent control-weighting
factors.

Finally, a general measure of the guidance systems' performance in ful-
filling its dual objectives can be obtained by adding a measure of the
terminal error to the time-integrated values of the trajectory and control
deviations. This summation is denoted by the scalar symbol P and is called
the generaliged performance measure, That is,

tr
= 1 T 2 2
P=4% AX, T A§f+/ ( ACT + As<) dt
ty
by -
=1 T 1 T t
i AX T Axf+2/ (AC U AC+ AX' VvV AX) d (2.2.36)
vy

where the symbol T denotes a 6 x 6 symmetric matrix of constant terminal
weighting factors. (2.235) and (2,2.34) were respectively substituted for

AC? and AS2, The subscript "f" denotes the final value of the state.
The generalized performance measure is the simplest form used for developing
optimum linearized guidance gains; two such laws will be developed. In the
first, the gains are determined on the basis of nulling the predicted steering
objective deviation, d¥y , evaluated at d{)} = 0, while minimizing the
control exerted. This approach was called "Multivariable Terminal Control
for Minimum Mean Square Deviation From a Nominal Path" in Reference 18. 1In
the second, the gains are determined so as to minimize the generalized per-
formance measure (2.2.36). This second approach was developed in Reference
17*%, Since some degree of arbitrariness exists for the engineer in specifying
the weighting factors in the performance measure, this development permits
greater flexibility in matching the guidance law to the objectives for entry.

2.2.3.4 Terminal Guidance for Minimum Mean Square Control During Entry

The basis for determining an entry guidance law for minimum mean square
control® is as follows:

The steering objective deviation, dy
terminal_point,. dQ = 0,

*The guidance law satisfying the first two criteria was originally developed

by Bryson and Denham, and included in the linear perturbati id i
o¥ the Boost Guidancé Equations monograph in thispseriesa?Rg%eggﬁcgnfg ?ectlon

s, 1s nulled at the
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The mean square value of the control deviation given by
t
f

C =f At U Ac dt (2.2.37)
ty
is minimized

An estimate of the non-standard atmospheric deviations can
be made and the control adjusted accordingly.

Consider the propagation of state vector errors in the system (2.2.28)
where Ac = 8p =0 . Thus, for no control or density deviations,
the differential equation of error propagation becomes

A_'x (t) = FAX (v) (2.2.38)

where the F matrix is a 6 x 6 matrix of time varying partial derivatives,
BEV/B}( evaluated along the nominal trajectory. The solution of (2.2.38)
from linear differential equation theory is

Ax (£) = @ (t, t) AX (tx) (2.2.39)

where AX (ty) is the state vector error at time, t,, o (t, t) is a
6 x 6 solution matrix whose elements are both a function of t and ty, and
AX (t) is the value of the propagated error at time t > tyg. The matrix

é (t, tyx) is called the state transition matrix, since it relates state
deviations at time ty to those at t.

Since the system (2.2.38) is linear, the solution (2.2.39) is also linear
and errors resulting from disturbances at different times may be added. Thus,
for discrete disturbances, ( A X;) added at times t,, (k =1, 2, ... n), the
total propagated error at time t > t, is

n

AX W) = DL (6 ) Ak (v) (2.2.40)

Equation (2.2.40) is the general solution to the error propagation differential
Equation (2.2.38).

For the case where the deviations A X, are due to initial errors
A Xy (ty), control vector deviations A'¢ (t),and non-standard atmospheric
density deviations &p (t), these error functions of time may be approximated
by discrete functions for short intervals of time, A t,. The disturbances
Z&gk can be approximated using (2.2.28) by the expression
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where Ac .1 and dpy_; are fixed values over the time interval Atk.
Thus, from 1z2.2.1.|,0), the approximate propagated error is:

AX (t) = @ (t, tg) AX (t;) +

n
T bYeY
> o, ~k>[GAgk_l +H pk'—l] At,
k=1
In the limit as the time intervals Aty —> 0, this expression becomes exact

by writing it in-the form of an integral, that is,
AX (£) = @ (t, b)) AX (1)

t

+ f @ (t, 7 )G 7r)Ac 1) d7

t, (2.2.41)

The term P (t, ti) AX (ti) is the propagated initial state deviation,
the integral f¢ G Aag o represents the effect of the time-varying
control deviations and the integral ‘f g~ do dr represents the effect of
the density deviations, &p(7) .

That is, if the time at which the error is introduced (ty), is fixed,
the state transition matrix is calculated by integrating the linear system,
AX F(t)AX forward in time, either analytically or numerically,
using unit initial values for the state vector components. On the other hand,
if the time at which the propagated error is measured (ty) is fixed the state
transition matrix is calculated by integrating the linear system Y = —F‘T(t)l,
backward in time with unit initial values for each of the components of the
adjoint vector Y. This method is referred to as the adjoint method and the
system Y = = FT (t) Y is called the adjoint set of differential equations.

Let the solution to the adjoint set be given by

T (t)= A, tp) T (t) (2.2.42)
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where the time tf is assumed fixed. But, the time derivative of (2.2.41) and
(2.2.42) implies the relations

- —-

d =

= [¢ (t, tk)J— F(t) ¢ (4, t,) (2.2.43a)
d. FA(_t, t)]= - Fo(t) A(t, t)) (2.2.43b)
dt L 1] i

Thus, the derivative of the product of the matrix solutions AT and P is
found to satisfy

d T =

-

Thus, integration of (2.2.44) yields
AT (¢, tf) ¢ (t, t,) = matrix constant

Since unit values of the state vector and adjoint vector were used as
initial conditions in the integration of D and A , then (evaluated at
these end conditions) this product becomes Al (t s tg) = & (t, ) -
Thus, for a fixed time of measurement, tg, the state transition matrix can
be found by integrating the adjoint system of differential equations.

Rewriting (2.2.41) for a fixed nominal final time te , then yields

s
AX (bp) = A (oo ty)  AX (b)) + f Al (to,7) G (7) Ac (1) d7
ty
L
+ f AT (tp, 7)) H (T 8plr) ar (2.2.42)
£

The actual final time, however, will generally differ from the nominal
final time by an amount, dt, , due to trajectory deviations. This change is
reflected in the final values of the terminating condition and the steering
objective deviation by the approximate relations:

o2 an
an = (—) Ax (t.) + (——)df (2.2.43)
J = f gt | ¥

X
= l‘:f‘ -(r
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E)ax )+ (2F)

= ——dx (£) + {— ) d¢ 2.2.

dy (aéttl r o,éét 7y ( L)
e =t

where A X (tg) is given by (2.2.42),

dan an  Jdx L2 an a4
() - (22 ox, 23y (B, o (22.85)
dt ix dt 2z ax at
i‘éf {=tf é‘fr
and
a d 2 2y J
@) (ZEE) (e H), e
. X £ ¢ed
tt; f'tf 7
The increment in final time is found by substituting (2.2.45) into (2.2.43),
setting dQ =20 » and solving for dtp to yield
/I dN
ot = -(.— —)Ax(a‘) (2.2.47)
£ 2 de ),
2

Substituting for d-tf and grouping terms in (2.2.44) theﬁ yields

w _ ¥ 3ﬁ) y
- - x ()
dy (2;4 3 oz, £ (2.2.483)
£
or
w ¥ 9 ) .,
_ -3 - (2.2.48b
dy (25 4 axg) 42 =0 (2.2.48b)

Since the value of the mean square value of the control d%viation, C, is
unchanged if (2.2.48b) is multiplied by a matrix constant, v, and the
result subtracted from C, then from (2.2.28b), (2.2.42) and (2.2.37), it is
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found that

i
¢ =f[Ag’UAc - u’/z;m G AC - vT/L’m Ha,o] dt
z‘[

(2.2.49)
v [ oy Ay (4,80 22 (4]
where
4 (% _ ¥ oamy s
/11,ﬂ (L,¢) = (ax 3 a_) A (t;,;f) (2.2.50)

z‘-tf

The control function, A G, will be found so as to minimize (2.2.4a) subject
to the constraint (2.2.48b). This solution is accomplished by setting the
variations in the mean control deviation 8¢ resulting from an arbitrary
variation, 8( AC) to zero. That is,

72
§C =/[ZAQTL{ _7/2’!2 G] dlAC)dr = O (2.2.51)
Z-

L

It can be shown®* that to have (2.2.51) equal to_gzero for arbitrary & (AC),
the integrand must be zeroc. Thus, for minimum C,

ACT =2—’ vr_/l:rﬂ_ G U’ (2.2.52a)
or
= KA Y A 4
4¢ =z U G Azm v (2.2.52b)

since U 1is a symmetric matrix. To solve for the matrix constant, v , the
control functions (2.2.52a, b) are substituted into (2.2.42) and the resulting
terminal state deviation substituted in the constraint condition, (2.2.48b),
with dy =0 . Thus, it is found that

V3
v = =TGN, by ) D (4) -J"fAZ_m H&p dt (2.2.53)
¢ ’

*The proof is omitted here
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where

¢
£
Y T -l AT
J) = Z/A,!ﬂ GU'GT N, o (2.2.5L)
<
Substituting the matrix multiplier solution into (2.2.52b) then yields the
desired control program, i.e.,

ac =3 UGN, 2l Ny D) +T f/tm H 80 a7

= -, (¢) [/L (£) Ax () +J (f)f/t Hpdr|  (2.2.55)

where A (t) is a matrix whose elements are dependent on the actual time, t,
and Az(ti) is a matrix whose elements are dependent on the measurement time,
tj. If continuous monitoring and contrcl is used, t = ti, and the product

of the two matrices may be cambined into a single matrix. Thus, if the density
deviation, 8p , can be determined at time, t4i, and an estimate made of the
deviation for the remainder of the flight, then the integral expression in
(2.2.55) can be evaluated. A simple method, used in Reference 20, of
evaluating this integral is to assume that the density deviation is constant
over the measurement sampling time, Ati, and zero thereafter. For this
case, the control Fquations (2.2.55) become

D = -A (B[N, @) Dx () + A, (4) dp (L)) (2.2.56)

where

3 W) GT(L) Ay s ¢)

1

A, (4)

A = TN, é‘-)

m.‘

A, (4 =T (uf/t (4,2 H ()~

2.2.3.5 Guidance Law for Minimum Generalized Performance Deviation
A second linear guidance law is that which determines the gains in such

a manner that the performance criteria (2.2.36) is a minimum. The development
which follows is taken from the work of Kovatch given in Reference (17).
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The development of this guidance law could be accomplished using velocity
as the independent variable; however, time was selected in order to follow the
formulation given in the reference. This law possesses more flexibility in
the determination of the optimal gains than minimum mean square control, since
it admits the basis for their determination to include minimizing deviations
along the trajectory. Thus, because of the flight envelope restriction, this
method is better suited to entry guidance than the minimum mean square control
scheme. This flexibility arises since no terminal constraints, such as
(2.2.48b), are imposed on the formulation. Thus, the performance weighting
matrices T , U , V can be arbitrarily specified. From Equation (2.2.36),
it is seen that changing the relative values of these matrices alters the
criteria for guidance and shifts the objective towards either minimizing
terminal deviations (by increasing the value of T ), control deviations
(by increasing U ), or trajectory deviations along the nominal (by in-
creasing V ).

The gain functions develeped here, (as in the reference), will be le 't in
terms of these time-dependent performance weighting matrices, since this
approach enables the guidance objective to be altered during the flight. The
primary disadvantage of this approcach, however, lies in the fact that the
nominal solution allows little variation in the choice of terminal objective.
This problem may be alleviated if more than one nominal solution were employed,
however, some of the simplicity of the linear perturbation guidance method
would be lost.

For a selected set of performance weighting matrices, ( T, U, V ),
the gain matrix L is a function of time and a given atmospheric model; thus
the generalized performance measure P is a function of the initial state
vector deviation AX(t;) and the initial and final times, t; and tg. Thus,
for T, U, V, L fixed,

P="P (AX(t;), ty, tg) (2.2.37)

Let L denote the gain matrix which minimizes the generalized
performance measure (2.2.37) and Pyty its minimum value for a variable
initial time t{ = t and fixed final time tp.

The total derivative of Pypy with respect to the variable initial time
t is given by

4 p . Ohgy , OPmn  d(AY
& 54 IS~
where op is a (1 x 6) row vector.
o(ap = HxO
_ Now, since the integral of the derivative of Pyyry satisfies
tr
/ 4 (Agy) at = Pypy (AX (bg), b ) - Pyry (A (t3). by, tg) (2.2.58)
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where
L LT
(ax (t.), tp tp) = 24X (b)) T AX (%) (2.2.59)

Prrw

Substitution of (2.2.59) into (2.2.58) yields the relation

te
: T 3 = -d
= AX (tf) T AX (tf) = f oy (PM_TN) dt - ”TN (AY (t ) tf)
ts
te
op O Py
! ot a(Ax) (2.2.60)
i

3 ax¥(tp) T AX (tg) in the

Finally, substituting (2.2.60) for
generalized performance measure P, Equation (2. 2 36) becomes
_lf a
P oP
. T Py MTNAX)
AT VAX* “Fy 7 8(Ax)

PAX (8.), by, te) = f (% A?.TUAE + 3z
5 .

ti
~ Py (A% (85), b5 tp) (2.2.61)

Therefore, the function Ac - Ac (t) which mlnlmlzes the integral
term in (2.2. 36) will therefore minimize P, /the term PMI AX (ty), ti, te)
I?t But, the

is not dependent on the arbitrary control functlon
condition for an integral of the form

te
T = f J(Ac, AX, ...) dt
by
tc have a minimum with respect to Ac (t) is that
od
A = 0. 2.2.62
O6(Ac) ( )
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(for all t; where t; = t < ts). Thus, for P to have a minimum with respect
to Ac it is necessary that

_ oP o .

i 2By .
The terms 3 AXT V AX, = and 2fmw  5re not functions of

2 X
the arbitrary control variation Ac (t) and t.%g’re’fore the partials of these
terms with respect to  Ac are zero.

But, assuming non-standard atmosphere density deviations to be zero,
Equation (2.2.28) becomes

Hence,
8(AX) |
Il - G (2.2.64)
d0(Ac)

Substituting the result (2.2.64) into (2.2.63) and forming the partial de-
rivative indicated then yields

. GPM'IN
'T' - am s S D— O
U +
Ae 3 (a0
Therefore, the guidance law which minimizes P is
oP -
Al = - S0 g oyt (2.2.65)
8 (AX)
or, since U 1is symmetric,
PT
0
-1 T 2. MIN
= -U G (2.2.66)
Be 8 (AX)

To complete the solution for guidance law, it is necessary to determine the
function Pyyy in (2.2.66) and calculate its partial derivative with respect
to AX. The first of these objectives is accomplished by referring to

Equation (2.2.61), since P — Py pwhen Ac= L yy AX. Substituting
P=P into (2.2.61) then yields
N MIN
f
oP AP .
MIN
f (2 A" v Ac+s AXT vV AR+ — M o B0 Ax) @ = o
= ) ot 4 (AX)
b (2.2.87)
i
51



But Fquation (2.2.67) must be satisfied for all values of ti, thus Pyry is
determined by the condition that the integrand of (2.2.67) must be zero for
L = LMIN*’ i.e.,

_ P .
L OPan O Py AX =0 (2.2.68)

1 T 1 T ¥ o+ . ‘

To solve (2.2.68), Kovatch suggested a solution of the form;
P (AX (t), t, t) =2 A}gT (t) A (t, t.) AX (t) (2.2.69)
MTH ; ;

where Ap is a 6 x 6 matrix having time-varying elements. This form is also

suggested by the minimum mean square centrol deviation solution of (2.2.3.4).
Assuming this solution

9 Pum
8 (AX)

AT Ap (2.2.70)

OPhm o AXT A, AX 2 AT AL Ax+: AXT AL AX
dt

A0

|
M=

(FAX+GAQ)" A, AX+: AX A AX ¥

A
>
s

A, (FAX +GAcg)

il
pileo

(Ax" FT o+ Ac G A, Ax+i AX Ay AX+

AXT A, (FAX +GAe)

M

(2.2.71)

*The proof of this is omitted here

52



sf

Now, substituting (2.2.70) into (2.2.65) and (2.2.66) then gives

T ™ -1
Ae = -AX A, GU (2.2.72a)
-1 T
e = -U G Ap, AX (2.2.72b)

Thus, Equation (2.2.71) can be written as

_aPMTL-‘ = %Af Fr Ay AX - = Af Ap G gl GgT A, AY +
ot
=l 4 T
DAY A Ax+3: AY AL FAY -3 AXY AL GU AL AX
-~ o P — “~ T . -
T T -1 7 ™ . \
=1 AX (F Ay -2 A_ G U G Ap + Ap ¥ ApF) AX
(2.2.73)

At this point the terms in (2.2.68) are expanded as

O Purn T :
. e Y = AX A FAYX +GAC
gap OF p (FAL )

- T T
= AX' A_FAX- AX AL G vt G Al Ax
-1 T
=iAX @A F -2 A_G U GT Ap) AX
p D
(2.2.74)
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- -1 T T
1 AU Ae=2(0K" AU U (UT G Ay AD
- T T
=3 AX ( A, G e AJ)AX (2.2.75)

Now,if the expressions (2.2.73), (2.2.74), and (2.2.75) are substituted into
Equation (2.2.68), the result is

T

T - .
1 AX(F A -3A_GULGg AT+A +3A_F + V)AX=0
P P P P P

But for this relation to be satisfied for all values of AX, the expression
in the parentheses in (2.2.76) must be zero. That is,

d A
— 2 - _FTA +3A G ULt AT o3 A F -V (2.2277)
dt D P b p

Finally, the guidance law which minimizes the performance measure P 1s given
by

-1
Ac (t) = - U G" ApT A X (1) (2.2.78a)

where A_ is the solution of the system of differential equations given by
(2.2.77) and having a boundary condition for /Xp determined from
Equations (2.2.68) and (2.2.69), i.e.,

=T
A . (t, tf)
(2.2.78b)
t = tf
2.2.3.6 The Velocity-Dependent Approach

The linear perturbation guidance laws presented in previous sections
employ time as their independent variable and the look-up variable in the
tabulation of the gain matrix in the system's mechanization because the
equations of motion are written using time derivatives. The selection of
time as the independent variable is appropriate for space guidance where time
of arrival is often an important factor. For entry guidance, however, the
time of arrival often is unimportant and the use of other independent
variables may be investigated. The use of velocity for entry guidance is
especially appropriate since:

. The velocity magnitude is often a good indicator of

ranging potential and is intimately involved in
specifying the flight limits.
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. The aerodynamic characteristics of the vehicle can be
approximately determined as functions of the relative
velocity. '

However, to use velocity as an independent variable, all time derivatives
in the equations of motion must be multiplied by the inverse of the expression
for dV/dt. This multiplication is valid as long as dV/dt # O. In addition,
all time-dependent forcing functions, such as the aerodynamic control vector,

must be transformed. In this fashion, the equations of motion can be written
in the form

av E, (2 (V), ¢ (V), V) (2.2.79)

where Z is a column vector having five components, (i.e., one less than the
state vector), and where the vector function Fy is dependent on Z, the
aerodynamic control vector ¢, (now a function of velocity), and the velocity.
The vector Z is dependent on all components of the position vector and two
components of the velocity vector, (the third component was eliminated by the
transformation). However, it is noted that the dependence may involve inter-
mediate functlons. Some examples of Z vectors which qualify for the velocity
dependent approach to linear perturbation guidance are given by:

— -

b (3)

R R

Z = 4 = Y

- Y h
L ¥ A

Starting with the vector set of equations (2.2.79), two linear guidance laws
using velocity as the indepent variable can be developed in exactly the same
manner of Sections (2.2.3.4) and (2.2.3.5). The development of these theories
need not be repeated. By eliminating one variable from the development, the
differential equations used to determine optimum guidance gains will contain
one less variable and therefore will be somewhat simpler to integrate. How-
ever, the form of the linear perturbation guidance law will remain

Ae = L, Az (2.2.82)

where the gain matrix, IJV,is velocity-dependent. Since the velocity-de-
pendent approach to linear guidance adjusts the trajectory control to a vari-
able more closely related to entry performance than time, this approach should
be used if a nominal trajectory approach to entry guidance is selected.
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2.2.4 Fast-Time Integration Explicit Guidance

In fast~time integration guidance, a prediction of the range performance
that would be obtained if the current control is held constant is made by
numerical integration. This range is then compared to the desired range and
a second prediction is made using a modified control designed to move the
final range in the direction of the target. This operation completes one pre-
diction cycle. With the information, thus obtained, a linear interpolation
of the range vs. control is made to determine the actual control required to
satisfy the desired range-to-go. To be of any use in a given application,
the prediction cycle must be short in comparison to the elapsed entry time,
thus the term, fast-time integration.

Although the "exact" equations of motion can be used in the numerical
integration, this set is cumbersome, and would impose a severe burden on a
digital computer. For this reason, a simplified differential equation is
used, (Chapman's second order nonlinear differential equation for entry*

The accuracy of the prediction given by this method is limited by the
accuracy of the input measurements and the magnitude of the density deviations
from the atmospheric model. Further, since the dynamics of entry motion are
basically divergent at supercircular velocities at fixed control values, the
prediction may have to be densensitized to be of any use in this velocity
realm. Another disadvantage with this method is that the control function is
limited to simple functions (e.g., constants), whereas the typical entry
trajectory requires programming of the control commands to meet performance
requirements. In addition to the range prediction by fast-time integration,
any of the other performance variables relating to the vehicle or crew limits
may also be predicted to insure that the trajectory flown will be in the
flight envelope.

In the derivation of Chapman's differential equation for entry, several
preliminary assumptions must be made. These are:

. The precentage change in radius is negligibly small

compared to the percentage change in velocity, (i.e., ——<i<‘,)
. L tan ¥ << 1

D
. Non-rotating, spherical planet with exponential atmosphere

With these assumptions, the equations of motion in the horizontal and
vertical directions, from Appendix A, become

2
u
im Qg_ﬁ R % (sin Y - % cos ¢ cos YY)+ — -1 (2.2.833)

&p'p

*A complete discussion of the assumptions used to derive Chapman's equations
and some characteristics of its solution are described in Reference 3.
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du
dt

u?

cos Y

CpS
m

W=

(2.2.83b)

However, it was fqund by Chapman, that the adaption of a new independent

variable,
= u
u = —
Ve
_
= i
(gprp)
and a new dependent variable,
ChS r 2
D —
7z = 12— ;fg p (2.2.8L)

would permit Fquations (2.2.83a, b) to be replaced by a single differential

equation which is nonlinear and of second order in Z
Z function by Chapman.

this equation is called the

. The solution of
From (2.2.84), this

function is seen to be proportional to the free-stream Reynolds number
history of the flow, (if atmospheric viscosity is assumed constant).

The predicted flight path angle history is determined by forming the

derivative of (2.2.8L) with respect to the

4z c r.® CnS 1.z
= = 1 ZD2 _ET + 1 D p
Nt S N
Z 1 1
= = + B2r2 sinvVy
< P
u

where (-Bp ) is substituted for dp /dh, and

(dn/dt).

angle. Thus,

sin Y

I
(=
I~
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independent variable u to yield

dh
dt

dp
dh

dat

du (2.2.858.)

du
u atu

(2.2.85b)

u tan?V is substituted for

But this equation can be solved for the sine of the flight path

dz - Z
( da 2 ) (2.2.86)



This expression, in turn, can be substituted into the nondimensional vertical
acceleration Equation (2.2.83a) to give

1 d2h _ 3z qz z 1L
= 9= = _ < _ £ . z L =2
Ep .2 cos2y ( i = B Ty p cos ¢y cos }’) O -1

(2.2.87)
where Equatipns (2.2.83b), and (2.2.8L) were used in substituting for (D/m)
and (u®/g ]:vp) in Equation (2.2.83a). Another expression for the non-
f ertica

dimensiona 1 acceleration can be obtained by differentiating u tan ¥
to yield,
1. d®n - L 4 (u tany) _ 1_(d_u tan ¥ + u ssc? y g_y)
g P g dt g, \ dt dt
p dt P :
- d? Z d2 Z
= _1_1__22_. u + ﬁtan?*y(—z‘ - % g__z + EZ) (2.2.88)
COS '\6\ d ﬁz d u u du u
Since
dy - dYy di
dt du dt
= -1 L1 |4 (dz _ 2 1, 1z
cos Y B:': r. = [;' (d- = )] <' gpz K cos (2.2.8%)
P Ay u u
and
du _ O - /A
& - " 8~ BF cos Y (2.2.90)

Thus, equating the right hand sides of Fquations (2,2.87) and (2.2.88) and
substituting the expression (1 - sec< ¥ ) for (tzam2 Y ) the Chapman second
order non-linear differential equation for entry is obtained, i.e.,

3%

-2
2 d Z l1-4
L"‘"_ +§= cosh)’-IB r
- u -

P
du2 du u Z

b
I

cos ¢B cos3 (2.2.91)
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where, the cosine of the flight path angle is found by (2.2.91)
1
1

21 =
cos ¥V = |1 ~ L (fd_z._ - _%.)
Brp da u

Finally, the longitudinal and lateral ranges are obtained by solving the
following equations: :
u

1 f
I'n2
x = = 22 ycc:d' da (2.2.92)
B
u,
1
Vs
s
y - p° cos Y sin ¥ _ (2.2.93)
3 7z du
where af ﬁi
v = Cp, sindy cosy cos Y tan (rz')
Ch & * 7 ot g5 (2.2.90)
ui D B I'p

A list of other performance variables predicted in terms of the Z function
and the velocity ratio wu, is available in Reference 3.

The initial step in the prediction cycle requires the computation of the
initial value of Z and dZ/du. These initial values are found as a function
of the initial drag acceleration and altitude rate, from (2.2.8L), and (2.2.85)

as )
2 (I‘p)2 Cps p ui
« = —_ — bl ———
. B 2 m (gprp)‘lé
D
1 (m)i
= 1 cos V.
(ng)E Uy !
()
1 m /5 2 (2.2.95)
= - 1 Tup (1 - sin“ y i)
(gpﬁ)
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—
g8
"
i
[

f=N}

1
+ (B rp)‘ sin ¥,, (2.2.96)

tan Y. =
i

£

Prediction of the range performance using fast-time integration is now
accomplished by numerical integration of the Eouations (2.2.91), (2.2.93)
and (2.2.93) subject to the initial conditions given by (2.2.95) and (2.2.96).
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2.3 APPLICATIONS OF ENTRY GUIDANCE

A great many investigators have examined technigques of guiding a ve-
hicle through the atmospheric flight phase to arrive at a predetermined
recovery site. A partial list is given in References 24 through 51. Many
of the guidance technigues have been simulated on digital and analog devices
thus justifying, to some extent, the validity of the mechanizations. All of
these contribute to some degree to a better understanding of how a guidance
system can be mechanized to fulfill particular guidance objectives. However,
it is not practical to describe in detail all of the excellent work that has
been done in the field. Rather, this Monograph will describe briefly two
formulations which have been subjected to detailed design study: notably, the
Gemini and the Apollo formulations.

2.3.1 The Gemini Formulation

The Gemini vehicle is an excellent examole of the use of aerodynamic
control forces to control the touchdown location of a fixed=-trim roll-modulated
maneuverable entry vehicle. A description of the guidance technique is given
in Reference 21. Path control is achieved in a "bang-tang" fashion. The
navigational section of the computer is used to calculate the remaining great
circle distance from the vehicle to the recovery site from which the downrange,
(Xy), and crossranre, (Yo), components are derived. Durine each pass through
the guidance computer, approximately every 1.2 seconds, a prediction of the
ranpge capability for a spinning (ballistic) flight mode is made using the
following method:

RP = F (D) + Fl v + F2 (D) v (2.3.1)
o)
where
RP = Predicted range
Y = Relative flirht vath angle
V = Relative velocity
a = Smoothed sensed acceleration

Fo (D), Fy (D), F, (D) - Functions of D

and where a quantity D which is characteristic of the altitude of the ve-
hicle is calculated from the expression

V2
D= loglO —_
a
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The vehicle is caused either to roll at a constant rate or to maintain a bank
attitude dependins upon the relationships between Rp, Xy, and Yg. If Rp = Xy,

a constant spin rate is commanded providing Y is less than a specified or
calculated 1limit. Otherwise, a bank angle of 90° is commanded which will turn

the vehicle toward the recovery site. If Rp < Xy, a 1ift attitude is
commanded based upon the relative values of Yp and Xy.

A ballistic flipht mode was selected as the basis for range prediction
because it was felt that the uncertainties in the drag varameter would be
less and that the predicted value of ranse would be better than if the 1lift
parameter was also employved. To prevent a tarret overshoot, Rp was biased
to cause an early spin. The bias was removed as the vehicle approached the
recovery site. Though this method results in good ransing accuracy, one of
the shortcomines is the radically different command attitude state which may
result. For example, the vehicle may just reach its maximum roll rate when a
constant bank anrle is commanded. Then, the reverse may happen resulting in
inefficient attitude control fuel usage. A simple fix is to eliminate the
spin command and replace it with a 90° bank anfle command.

Another method of longitudinal control is that described in Reference 22.
This method is fundamentally the same as that employed for Apollo in the
terminal glide phase. The theory of this method is riven in Section (2.2.2).
The control equation which yields the commanded vertical vlane L/D is

(%)c =(%>REF+ Ky (y_yRELF‘)+K5(z%- ‘%Lzr T K (R - Rpgp)  (2.32)

where (L/D)ggr, Yrprs D/mppr and Rppp define the reference trajectory
characteristics as a function of velocity, and K and K¢ are sensitivity
coefficients as a function of velocity comvatible w1gh the reference trajectory.
The coefficients can be obtained throush solutions of the adjoint ecuations
and/or emperically from trajiectory simulations. The error terms are not
necessarily restricted to those shown. For example, any term indicative of
enersy dissipation could be used in lieu of D/m. And any other term indi-
cative of the rate of change of enersy dissivation could be used in lieu of

Y . Likewise, any monotonically chanring parameter could be used as the
independent variable in place of velocity., The selection of these parameters
is dependent upon the sensor capabilities and the guidance reauirements. This

method is not restricted to a fixed-trim roll-medulated vehicle. For example,
(L/D)C may represent an anple-of-attack requirement. The ranging accuracy of
this method is also excellent when applied as described since closeness to
the reference trajectory can be expected. Fntries from reduced velocities,
such as from a boost abort¥*, without selection of a new reference trajectory
will tend to reduce the accuracy because of the linear assumptions. The
mechanization is straightforward althourh storase of six parameters as a
function of the indevendent variable is recuired.
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2.3.2 The Apollo Formulation

An example of entry guidance from supercircular entry conditions is that
of the Apollo given in Reference_(23). The Apollo system combines features
of both the explicit and implicit technioues. The complete guidance logic is
extremely complex involving many logical decisions and solutions to many
eouations, Therefore, only the essentials of the suidance law are described
starting with downrange control.

At the start of the initial entry phase, a lopical decision to select
a lift-up or lift-down attitude is made based upon an imperical relationship
which defines the position within the corridor. Another logical decision,
based upon sensed acceleration is recquired to terminate a lift-down command:
the initial entry phase is terminated and the transition phase is initiated
near the maximum G point upon reachings a specified nefative altitude rate.

The calculations performed and the vehicle attitude commands derived
durine the transition phase are the key to successful ransing from super-
circular velocities. The vehicle is initially maneuvered to a specified
acceleration level usingf errors in acceleration and altitude rate as a
control base. As the vehicle traverses this path, a ranre prediction is made
every two seconds. The range prediction is achieved by summing the following
components: (1) range from the vehicle to the atmospheric exit point, (2)
ranfe alonf a drar free Keplerian arc, and (3) ranre during the second entry.
The predicted ranse is compared with the remaining ranrse-to-go during each
pass throush the pguidance computer. When the two are aprroximately equal,

a reference path for which the predicted ranre eocuals the remaining range-to-pg¢
within a small tolerance is selected by an iterative procedure. The vehicle
is then controlled to the reference path until exit occurs. While the wvehicle
is above the sensible atmosphere, the vehicle's pitch and roll attitudes are
adiusted to appropriate values for initiation of the second entry (re-entry).
The re-~entry path is traversed usine an implicit puidance method usine errors
in ranfe, D/m, and altitude rate as a base velocity being the independent
variable.

The path from the vehicle's present position te the atmospheric exit
point is defined explicitly on the basis of a constant value of L/D somewhat
less than the maximum value to provide a reserve for vehicle control. The
assumptions involved during the derivation of the pull up to exit path result
in a reference path which does not match the path that would be obtained by
solving the complete equations of motion. However, the path is an adeguate
approximation and, what is more important, yields a vath that can be flown

“*An open-loop control approach is usually sufficient for this case.
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and described analytically. The key to the derivation is the relationship
between altitude rate and velocity which is approximately correct in the
neighborhood of circular velocity where the v2/p - g term may be
assumed to be gzero. This approximate relationship

L
hy -h = § (V;-V,) (2.33)

can be used to relate h and V at any two points on the reference path.
Other approximate explicit relationships are used to relate velocity along
the path to the acceleration level. These relations permit definition of V
and h as a function of acceleration along the path. Thus, taking the
acceleration level as zero, permits calculation of the velocity and altitude
rate at the exit point necessary for the caleculation of the opredicted ranre
components, The range-to-exit is based upon an explicit relationship in-
volving the reference path terms. The second entry ranre is predicted
based upon a linearization of precomputed values of ranfe vs velocity for a
specified entry path anpgle plus a correction to account for a variation in
entry vath angle.

For some values of reocuired entry ranfe, an atmospheric exit is not
reouired but a transfer to a low acceleraticn level is reguired. Tor this
condition, as the vehicle traverses the constant acceleration vath, the pre-
dicted range will decrease until finally the Keplerian arc range reduces to
zero. If, at this peint, the predicted ranrfe still exceeds the rermaining
range to go, the method of predicting range is adjusted to predict the
minimum acceleration level that can be achieved with a constant L/D pull-up.
Then, the predicted range components then consist of (1) range to the
minimum G point and (2) ranrse from the minimum G point to touchdown, both
ranges being calculated as before. Vhen the predicted range equals the re=-
maining ranpge to go, the reference trajectory to the minimum G point is
selected, the vehicle is controlled to this reference until a negative
altitude rate occurs which signifies that the minimum G has been reached, and
the remaining range in the terminal glide region is then controlled using
the implicit method previously mentioned. If the required entry range is
shorter yet, that is, the predicted velocity at the minimum G point is less
than some limiting value, control is transferred directly to the implicit
terminal glide calculations.

Control along the reference trajectory either to the atmospheric exit
point or to the minimum G point, whichever is appropriate, uses acceleration
level as the indevendent variable from which reference values of velocity
(VREF) and altitude rate (hppp) are calculated. Deviations in velocity and
altitude rate from the reference values are used as a control base. The
control gfains are adiusted to give more weight to veloecity errors than h
errors as the exit or minimum G points are approached.

A precomputed reference traiectory is used in the terminal glide phase
which is representative of mean terminal glide motion. The reference is
based upon a positive value of L/D which gives approximately equal range
correction capability in each downranrce direction. Reference values of range,
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drag acceleration, altitude rate, and sensitivities of range with respect to
drag acceleration, altitude rate, and L/D are stored in the guidance computer
as a function of the independent variable, velocity. The corrnand equation is

L) =(3) + & @-mg+r(2-2 ) vk (h-i
(2.3.2)
where

K,= B
7 L

8(3)
K, = OR_
8 D

5(2)
k- 2.
9 oh

Crossrange control is obtained in a straightforward manner. A conservative
estimate of the crossranpe capability is made by assuming it to be propor-
tional to velocity. The lateral aerodynamic forces are initially directed
such as to turn the plane of motion toward the recovery site. The lateral
forces are then directed to the left or to the right to keep the recovery
site within the estimated lateral capability.

The flexibility reaquirement of the Apollo guidance is severe and is one
of the reasons explicit. techniques are used in the transition phase. The
penalty of providing flexibility is ranging accuracy and complexity. However,
precise ranging accuracy is not reoquired in the transition phase as long as
the vehicle is capable of reaching the recovery site by the time the terminal
glide is reached even after including the effects of non-standard conditions,
state vector inaccuracies, and vehicle response characteristics. The implicit
method used in the terminal glide phase is inflexible but flexibility is not
needed during this phase. What is needed is ranging accuracy which the
implicit method provides.
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3.0 RECOMMENDED PROCEDURES
3.1 GUIDANCE SYSTEM MECHANIZATION

In Section 2.1, the basic entry performance interactions that must be
considered when formulating a guidance system was described, and a method of
discerning between unacceptable and acceptable trajectories was introduced.
In Section 2.2, the basic mathematical theories of entry guidance were de-
rived in terms of paths for which closed-form solutions can be derived, in
terms of paths which are defined by a fast-time integration method, or in
terms of controlling the vehicle in the neighborhood of a nominal trajectory
known to exhibit desirable trajectory characteristics. The purpose of this
section is to qualitatively illustrate how the development of the previous
sections is related to the formulation of a guidance system.

A typical guidance and control system for entry is shown in Figure 10;
the system employs an inertial platform and sensors, a computer, and an
attitude control system. The inertial platform and sensors continuously feed
information into the computer from which estimates of the vehicle's positions,
velocity, and acceleration are made. This information is then operated upon
by the guidance logic to arrive at a control vector command which is fed to
the attitude control system or to a pilot via suitable displays for manual
execution or monitoring of the guidance commands. The speed with which new
control vector commands must be supplied varies from one or two seconds to
several seconds depending upon how fast trajectory conditions are changing.

Computer
—~ NS ™~
Inertial . : s Attitude .
Navigation Guidance Vehicle
» Platform and (- " Control X —
E
Sensors quations Equations System Motion
| T 1 i
( | | n
| l l i
I | | -
o . Pilot

Figure 10 Typical Guidance and Control System for Entry
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3.1.1 Guidance of a Vehicle having a Single Control Variable

This section is concerned with guidance of a vehicle having a single
control variabls such that the aerodynamic force components in the trajectory
plane (vertical plane containing the velocity vector) and normal to the tra-
jectory plane (lateral) can be varied. A fixed-trim roll-modulated vehicle
has this characteristic. For such vehicles, the vertical plane and lateral
force components are coupled; i.e., only one component of the force require-
ments can be satisfied at any particular time. However, it will be shown
that force requirements in the vertical plane are generally the most critical
with respect to fulfilling ranging objectives.

The fundamental technique used for guiding this type of vehicle to a
desired landing site can be illustrated by considering the footprint which
contains all possible points which can be reached for specified vehicle
aerodynamics and state vector. Consider the representative footprint
illustrated in Figure 11 at some arbitrary time during entry in a non-rotating
planet atmosphere. The axis of symmetry is defined by the vertical plane
contgining the position and velocity vectors at the given time. The heavy
line illustrates the ground trace that would be traversed by the vehicle
for a specified vertical plane force schedule with the residual lateral forces
always directed to the right. The light trajectory traces illustrate the
variation in the touchdown position that can result if the direction of the
lateral forces (same vertical plane force schedule) is reversed at various
points along the originally described trajectory trace. The distance along
all arcs is the same. Assume that the direction of the lateral forces can be
reversed as frequently as desired. A variety of paths could then be drawn
which would all terminate at the same point. In the limit, the vehicle could
be turned until the instantaneous trajectory plane contained a desired re-
covery site and by rapidly reversing the direction of the residual lateral
forces (bank angle reversals), the vehicle could remain in this plane until
arriving at the desired recovery site.

68



Arbitrary Trajectory Point

Crossrange —»

Figure 11 Effects of Lateral Force Direction Reversal on Touchdown Position
for a Vehicle having a Single Control Variable

Note: The aerodynamic force schedule in the plane of the trajectory is
identical for all the ground traces shown. The schedule of the residual
force normal to the trajectory is likewise the same in magnitude; its
direction, however, is reversed once at various times during the flight.
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Guidance to a specified recovery site can thus be achieved by considering

two uncoupled tasks: (1) control of the vertical plane forces to give a
desired arc length (longitudinal ranging), and (2) reversal of the residual
lateral forces such that the plane of the trajectory contains or is within
an allowable tolerance of the recover site (lateral ranging). The guidance
computer would thus have three essential functions as shown in Figure 12.

[ NavIcaTION |

LONGITUDINAL
RANGING

LATERAL
RANGING

Figure 12 Guidance Computer Functions

The navigational function defines the vehicle state and calculates the arc
length from the vehicle to the recovery site for use in the longitudinal
ranging section of the computer. If the vehicle aerodynamics and its energy
level are such that the cross-range capability is much smaller than the
downrange capability, an adequate approximation to the required arc length,
Rqgs can be calculated as the great circle distance from the vehicle to the
recovery site, If the cross-range is of the same order of magnitude as the
downrange, the great circle approximation yields too small an estimate. For
this condition, some technique must be devised to estimate the length along
the arc the vehicle will fly in reaching the recovery site.

An example of guidance to a specified recovery site is illustrated in
Figure 13.
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Unprimed Letters Denote Position
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the Direction of the Lateral Forces
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Figure 13 Convergence of Footprints around Recovery Site
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The large footprint defines all points that can be reached at some arbitrary
point along the trajectory. As the vehicle progresses toward the recovery
site, the size of the footprint shrinks as the vehicle's energy is dissipated,
but if ranging is done properly, the vehicle approaches the recovery site as
the size of the footprint approaches zero. The lateral forces are reversed
where necessary such that the footprint always contains the recovery site.

The points at which the lateral forces are reversed may be calculated without
precise cross range knowledge; an estimate will suffice as long as it can be
guaranteed to be conservative, (i.e., estimated crossrange capability is less
than actual crossrange capability), since such an estimate merely results in
an increased number of lateral force reversals. Finally, it is noted that the
vehicle could conceivably reach the recovery site with a single bank reversal;
however, four to six is more realistic with the frequency of reversals in-
creasing as the recovery site is approached.

The following paragraphs describe, in general, how the mathematical
formulations of guidance theories previously given are applied to guidance
of the single control variable vehicle. The closed-form explicit, fast time
integration explicit, and implicit methods all have common characteristics
as applied to this vehicle.

3.1.1.1 Explicit-approximate-closed-form solutions

By summing range increments along the various paths for which closed-
form expressions are available, an estimate (or prediciton) of the arc length
the vehicle would fly can be made. This estimate is compared with the re-
maining range-to-go to determine the vertical plane force (or force
coefficient). 1In essence, the procedure is to predict a range, compare this
range with range-to-go, and correct to a new path which will drive the
longitudinal range error to zero.

As an example of an explicit guidance law, consider the restricted
problem of a vehicle at subcircular velocity moving in a plane with position
(given by the altitude and longitudinal range from entry) h, x , and velocity
(given by the magnitude and flight path angle) V, ¥ . It is desired that

the vehicle attain the_terminal state h =0, x = xq, V < Vq. This is
illustrated in Figure 14i.

Figure 14 Longitudinal Ranging Geometry
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Disregarding, for purposes of illustration, the fact that the trajectory
flown by the vehicle must be restricted within the configuration's acceptable
flight regime, the objective of the guidance system is to command an in-the-
plane-of-motion 1lift/drag ratio to guarantee that the terminal conditions
are met. For simplicity, assume that constant (L/D) is maintained for the
remaining duration of the flight. Under these conditions, an explicit
guidance scheme predicts the terminal range for two or more fixed values of
(L/D); then with this information and the knowledge of the desired terminal
conditions, the scheme selects a command value of (IL/D). Let X, and X

denote the terminal ranges predicted for a vehicle starting at (%, X, @, Y )
and having fixed values of lift/drag ratio given by (L/D);, and (L/D?z re-
spectively. One means of defining the proper L/D is to employ a guidance

law linear in the difference between the predicted and desired boundary values.
In such a-system, the desired L/D can be calculated by first expanding the
terminal range function of (L/D) in a Taylor series about a predicted value
X i.e.

pr ~eFeo

6 (55 )%)p [(5)45)] - G20

where the large parentheses mean "evaluated at". Thus, approximating the
derivative by the ratio of finite differences,

(3.1.2)

d(5)

~

(dX,) O
)= (%), (5) - (3)

and assuming terms in (3.1.1) of second and higher order are negligibly small,
allows the command (L/D) to be calculated from (3.1.1) and (3.1.2) as follows

Oi~

N

(é) = (%) * (?,_I—J(XT'X,Z) (3.1.3)
2

- X
COMMAND

N<

In order for this explicit guidance law to be effective, it is necessary that
the predicted values of range be sufficiently close to the desired value that
the linear approximation is good. However, since the vehicle's exit from the
atmosphere could interfere with the validity of the linear approximation,
entry guidance laws of this form are not used for trajectories having segments
both in and out of the atmosphere. Thus, if employed, provision must be made
in the guidance logic to override a guidance law when it is in danger of
becoming invalid, (that is, when the state of the vehicle at any point along
the predicted path, including the initial point, is not within the configu-
ration's acceptable flight regime).
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3.1.1.2 Explicit-Fast-Time-Integration

. The application of fast time integration accomplishes the guidance task
in much the same way as the closed-form methods with two exceptions: (1) the
touchdown position is calculated in addition to the arc length and (2)
additional parameters such as load factor, aerodynamic heating rate and
heating load which may be critical to flight, can be calculated. The
functional operations of this and the preceding theory are essentially the
same.

3.1.1.3 Implicit

The implicit method can be made to resemble either of the two previous
methods. If only the vertical plane characteristics of the reference tra-
Jectory and associated sensitivity coefficients are stored, the implicit
method behaves like the explicit-closed-~form technique except that the
commanded vertical plane control vector is determined directly by relating
deviations from the reference to the appropriate sensitivity coefficients.
lateral ranging is accomplished, as before, by reversing the lateral forces
to maintain the recovery site within the footprint. If the characteristics
of the reference trajectory and associated sensitivity coefficients in the
lateral direction are also stored, the implicit method behaves more like the
explicit-fast-time-integration technique. Since only one component of the
force requirement can be exactly satisfied at any particular time, the
longitudinal and lateral force relationships must be weighted to give
emphasis to the range error which is predominating.

3.1.1.4 Combinations of Implicit and Explicit Techniques

Each of the three previous techniques described above have limitations
which may make it beneficial to combine the good features of each to finalize
a guidance law, For example, the closed form solutions are flexible but
problems may exist in finding a path which is compatible with the guidance
requirement and which also ylelds an acceptable closed-form solution. The
fast-time-integration method gives excellent results but the speed of
integration may be too slow compared with the rapidity with which trajectory
conditions are changing. The implicit method is very accurate but the
vehicle must be constrained to be near the reference which due to uncertainties
in the force model and errors in the guidance functions occurring before entry,
cannot always be guaranteed.

3.1.2 Guidance of a Vehicle having Multiple Control Variables

The technique of guiding a vehicle having multiple control variables is
not fundamentally different (the mathematics and logic are undoubtedly more
complex) than guidance of a single control variable vehicle previously
described. An example of a vehicle having two control variables is one for
which both angle-of-attack and bank attitude are modulated. The availability of
two control variables makes it possible to simultaneously satisfy both
vertical plane and lateral force requirements. Depending upon the force
needs; however, during some phases of the entry it may be necessary to satisfy
only one force requirement. This situation would arise whenever force re-
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quirements saturate the vehicle's force capability.

The concept of a footprint remains the same and it still is necessary
to control two components of range. All guidance theories still apply except
that closed-form solutions may not be possible for all paths previously
given,

3.2 MISSION AND GUIDANCE PHASES

The missions from which entry guildance may be required are illustrated
in Figure 15. Starting from the lower velocities, these missions are (1)
entry from boost abort, {(2) entry from low altitude Earth orbits or second
entry following an atmospheric exit (skip), (3) entry from elliptical Farth
orbits, (4) entry from a lunar mission, and (5) entry from planetary missions.

Low Alt.
. Farth ’
, Boost Abort | Orbit | Earth Elliptical Planetary
R "**-"l'ﬁnasrc > -_—
Ent ;
: Boost Abort ;o BILTY
Recovery Ceilings .
)
|
;
|
i ‘ I
| |
! ]
A - e _——

Figure 15 Relationship of Missions to Flight Regime
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For convenience in describing the application of the guidance theor?es
in controlling the longitudinal or down range entry motion, the eptry flight
regime has been partitioned into three phases as illustrated by Figure 16.

Low Altitude Earth
Orbital and Skip Entry
Velocities

Limit of Sensible_@igpspher?i'a

Transition

Recovery Altitude i

TS

Figure 16 Guidance Phases

Vehicles entering the atmosphere from low altitude Earth orbits will
immediately enter the terminal glide phase upon atmospheric penetration. The
terminal glide phase 1s constructed using a subcircular equilibrium glide
line as a mean with a sufficient band to account for path excursions as the
vehicle is guided to the recovery site. For acceleration-limited vehicles,
the terminal glide phase velocity width reduces markedly as the recovery
altitude is approached.
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Vehicles entering at supercircular velocities first traverse the initial
entry phase. (The minimum and maximum entry path angles appropriate to this
phase were previously described.) The function of the guidance system while
the vehicle is within this phase is to provide control vector commands to
avoid exceeding the limits illustrated and to yield a state vector from which
subsequent ranging objectives can be met., As the entry velocity decreases,
the initial entry phase can be considered to slide in the direction of re-
duced velocities until it finally blends into the terminal glide phase.

The transition phase is the bridge connecting the two previously
described phases; this phase is extremely critical with respect to ful-
filling ranging objectives and is demanding from the standpoint of guidance
law formulation. The criticality arises from the fact that the paths flown
can vary from one which sustains a high acceleration load to dissipate energy
quickly (thereby reducing the entry range) to those which pull up to exit
from the atmosphere, (to dissipate energy slowly), and thereby extend the
entry range. Atmospheric exists, if required, will occur at the subcircular
velocities indicated in Figure 16. Each of these transition paths finally
terminates with a descent in the terminal glide region, the point at which
the descent starts being a variable dependent upon the transition path and
the range requirement. A good guidance system is one for which the remaining
range to be traversed to the recovery site at the completion of the transition
phase equals the mean terminal glide range capability from the point. An
alternate way of stating this condition is that the recovery site should be
centered midway between the minimum and maximum longitudinal range capability
at the initiation of the terminal glide phase. The guidance objectives are
based upon designing a guidance system for standard conditions of atmosphere
and aerodynamics and for perfect sensor capabilities, Thus, a reserve in
range capability is provided for the non-perfect operational case.

3.3 REPRESENTATIVE GUIDANCE FLOW

At this point, it would be desirable to portray a detailed guidance flow
that would be general for all theories and for all guidance requirements.
Unfortunately, the more detailed the flow becomes, the more it deviates from
a general presentation until finally it represents a unigque situation. How-
ever, some amount of detall is necessary to provide insight to some of the
major decisions and calculations that are required. A representative guidance
flow is therefore given in Figure 17. This flow is applicable to a vehicle
entering the atmosphere at supercircular velocities where the vehicle must
traverse all flight phases previously described; initial entry, transition,
and terminal glide., The longitudinal control section illustrates this
partitioning. 1In this diagram, the phase selector acts as a switch to direct
the flow into the part of the mechanization applicable to the current tra-
Jectory phase. A pre-entry block has been added to illustrate actions
required prior to the time atmospheric penetration is sensed. In addition,
longitudinal and lateral ranging calculations are shown to be uncoupled.

If the particular guidance theory does not permit this uncoupling, the lateral
calculations must be absorbed into the longitudinal calculations. Further-
more, the guidance law may be such that the initial entry, transition, and
terminal glide phases cannot be individually identified, in which case, these
phases must also be abosrbed into some other classification.
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As shown, the phase selector during each pass through the guidance
logic directs the calculations through the particular part of the logic
compatible with the current trajectory phase. In each phase, logical
decisions are first required as indicated by the first row of blocks. . These
decisions answer the questions as to whether or not control should be
transferred to the next phase or to some subsection of the current phase.
In all cases, a point is always reached where a calculation is performed to
determine the vertical plane force requirement. Following these calculations,
the direction of the forces is determined by the lateral logic.

3.4 EXPLICIT VS. IMPLICIT METHODS

In each of the three guidance phases (initial entry, transition, and
terminal), either explicit or implicit guidance laws can be employed to
satisfy the particular requirements of that phase. Both have advantages and
disadvantages. For instance, in the initial entry phase, an explicit system
has the advantage because of its flexibility in handling the pre-entry
initial errors. On the other hand, an implicit system could be employed
with advantage during the terminal phase of a supercircular entry mission
since its simplicity of mechanization and accuracy are more important
factors during this phase than the flexibility factor, the gross ranging
task having been accomplished during the transition phase.

By the nature of an implicit scheme, it is obvious that during the
transition phase where the family of guided trajectories may encompass a
large part of the flight regime, an implicit scheme with a single nominal
trajectory does not have the needed flexibility and accuracy to fulfill
terminal ranging objectives. Thus, in order to be effective during this
phase, more than one nominal trajectory offering some choice in terminal
objectives must be employed to provide flexibility. However, the dis-
advantage of this is that it neglects to capitalize on one of the implicit
guildance methed's advantages, that of simplicity. Using more than one
nominal not only requires increased storage capacity for the guiding
variables and gains, but also demands that a logic be established to decide
which of the '"nominals'" is to be the one used.

In summary, some general statements can be made concerning the selection
of a guidance theory for any guidance phase. They are:

a) For phases where flexibility of terminal objectives is not a
strong requirement and expected initial deviations can be
restricted, an implicit approach is generally better.

b) For phases where large flexibility in handling terminal objectives
and initial deviations is important, the closed form reference
trajectory approach is generally more appropriate.

c) For phases where limited flexibility in handling terminal
objectives and the initial deviations can be restricted, an
implicit approach employing more than one nominal trajectory
should be investigated.
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d) For phases where large flexibility is desired and the flight
conditions are known with high accuracy, a fast-time integration
method should be investigated.

e) For flexibility, where the computational limits are not critical
“the closed form reference trajectory approach is generally best.

However, in comparing the two general classifications of guidance theories
with regard to their utility or application a common set of comparison

points must be used.

These are the following:

flexibility in handling pre-entry guidance errors
and uncertainties
flexibility in obtaining terminal objectives

accuracy
simplicity

on-board computational requirements

These criteria have been applied in the following table to the various
guidance techniques discussed in the text.

Guid. Tech. [Fast-Time

Inte-

Performance gration
Flexibility in Handling | excellent

Initial Errors and
Uncertainties

Flexibility in Obtaining
Terminal Objectives

Accuracy
Simplicity
On-Board

Computational
Requirements

excellent

excellent

moderate-
poor

moderate

Closed Form

Approxi-
mation

Variable @ain
Linear Pertur.
(Single
Nominal)

Variable Gain
Linear Pertur.
(Multiple

Nominal)

excellent

excellent

good

moderate

large

good to exc.

poor

excellent

excellent

small

good to exc.

limited

excellent

good

moderate
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The process of finalizing a guidance system depends upon many factors.
The content of this monograph is an attempt to consolidate much of the
worthwhile information on the subject to aid in guidance system selection.
It does not, nor was it intended, to answer all questions with which the
guidance system designer will be concerned.

Finally, it is noted that the entry guidance system is only one of the
many systems which make up the total vehicle. Thus, compatibility must
finally be achieved between all vehicle systems if it is to fulfill the
mission objectives and an iterative procedure normally results in the entry
guidance system design. Some of the factors which must be considered are
the vehicles aerodynamic capability, the available control variables, the
method of controlling the vehicle's attitude and the vehicle's attitude
response characteristics, ranging accuracy requirements, whether the vehicle
is manned or unmanned, available sensors and sensor accuracies, computational
aids, and other systems limits. Consideration of these factors permit a
first cut guidance formulation to be made which must then be simulated,
adjusted and medified, as the overall vehicle system evolves.
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APPENDIY A

A.1 (Coordinate Systems, Resolution of Forces, and the Equations of Motion

Let r and V denote the pbsltion and velocity vectors of a mass particle
m (representlng the vehicle) in an 1nert1a1 coordinate system having the triad
he o o ]

ne d+es vt wrantAane svstem de 1 7Tnaetnatad n +h avram

\J\. 2 ‘)'I’ DII A L VO WLl VOoOLWUUL W, L Ldon? I Wil o LA LU WL G UWOUL LL U.ll.e \J.J.aé-l.ﬂm
below.
m v
I . ————— o
%71
r
A
v
I
A

X1

;p addltlon, consider a coordinate system with a triad of wmit vectors (x s
Yo z ) hav1ng the same origin but rotating with fixed angular velocity w
Eout the 2, axis. This system is analagous to a coordinate system fixed
to, and rotating with, a planet having the Qi axis as its axis of rotation
and |w | as its rotational rate. In this system, let Vp denote the velocity
vectorof the mass m. This situation is illustrated in the diagram below
for the case where the % vectors are in the same direction.

L
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From vector kinematics, the inertial velocity is related to the velocity
relative to the rotating system by the vector equation

In a similar fashion, the inertial acceleration of the mass, denoted by
A =4V, can be related to the acceleration of m relative to the rotating

system, denoted by AR by the following vector equation,

A=A +t2 0, xV + o x (w,xr) (a-1)

R I R p p

But, Newton's second law of motion for a particle states that, in an inertial
coordinate system, the time rate of change of momentum of the particle is
equal to the force applied to the particle, thus if F denotes the applied

=d =
force, F w (mV) =mA.

The vector form of the eugation of motion for a mass particle is some-~
what different, however, when the vectors are resolved in the rotating system,
since from (A-1)

= + + Wy X T -
F m[gR 2 @ x Vo @, x (@p r)} (4-2)
To be of use for entry guidance, however, the point mass equations of motion
must be further resolved into a coordinate system rotating with respect to

the rotating planet coordinate system. The coordinate systems used in entry
guidance application generally have the plane of relative motion (defined by
the vectors r, V), as one of the planes. This plane of relative motion is
shaded in the following diagram,

Equator
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To accompligh fthis transformation, an intermediate tgpocentric coordinate
system (T, é, ) is used, where the unit vectors'%, § are in the direction

of local east and north respectively. The transformation of a vector resolved
in the rotating planet coordinate system to one resolved in the topocentric
system is accomplished by multiplying by the product of the rotational
transformation matrixes, T (L) T (A), i.e., *

2 [ 2
[ £ -l = T(L)T,W 9.
2 (A-3)

L4]

where the subscripts y and z denote the rotaticnal transformation matrices for
a cw rotation of L about the y-axis and a ccw rotation of A about the z-axis.
That is,

H

[cos L 0 sin 17| [ cos A sin A 07
Ty(L)= 0 1 0 'I_"S)\) = | =sinA cosA 0
-sinLL O cos L, 0 0 1

The unit normal to the plane of relative motion*¥ is denoted by 2 where

n = (a-4)

Thus, the radial di};ec&ioi% £ and the wnit normal can be used to construct a
unit vector triad (r, H, N), where H denotes the heading. With the exception
of the wnit normal vector these vectors are shown in Fi (é—l). The
tpansformation between the topocentric Rystem and the (gljr §, ) system is
accomplished by a cecw rotation and the r axis through the azimuth angle 'y .
In equation form this transformation is

# See monograph on Coordinate System and Time Measurement for a derivation of
these and similar transformations.

## For a non-rotating planet this vector is the same as the wnit angular
momentum vector used in The Two Body Problem.
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8 2
A A
H = T_(90-¢) | B
=000 8 (4-5)
A N
where the rotation matrix is given by
r 1T I
1 0] 0 1 0] 0]
Tel90-9)= | O cos (g - ) sin (-g -¥) = 0 sin ¢ cos s
0 -sin (.72_7 -{¥) cos (757' ~-Y) 0 -cos¥ sin¥

Another coordinate system in the plane of relative motion has one of its
axes in the direction of the relative vel/o\ci}y ector. This is the (7, , n)
triad of unit vectors obtained from the (r, H, N) system by rotating the

latter about the minus f direction through the angle the flight path angle (V).

This transformation is

A
1 P
A A _
VR = TZ(90-.V) H (a-6)
‘A n
n n
where
cos ¥ -sinY 0
TZ(-Y) = sinVY cos ¥V 0
0 0 1

A AThe 'bra.nsformat}on; b twee;\x the ;elative velocity fixed coordinate system
}gl,,VR, n) and the (r, H, n), (r, B, n) systems are illustrated in the diagram
elow. -
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A 2
A{/ . Plane of Relative Motion

w5y

Plane Parallel to the
Tangent Plane to the
Planet Surface

The triad (1 V s n) is especially approprlate for entry guidance purposes
since the aerodynamlc forces are defined in this system. For zero atmospheric
winds, the aerodynamic drag force D is given by

A
D=4 Cp/ Vv, « V
D=20php (g~ Yp) Vg (a-7a)

and acts in a direction oppos1te the relatlve velocity vector. The lift vector
in this instance is resolved in the f and f directions with the aid of Figure (2),
Section 2.1.2. From this figure

It
Il
Nl

CiA p (ER . \_LR) (cos ¢B ? ~ 8in qu /ﬁ) (a-7b)
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A N A
Thus, the total aerodynamic force vector Fpppny in the (2 Voo n) system is

CtA cos qu

nop-

F = (Vg © V) -CpA (a-7c)
~AERO PR R D

-CLA sin q.’>B
where the scalar guantity 2 ¥ ) is the free siream dynamic pressure of
the gas flow relative to the veﬁlcl

e and is denoted by §. Equation (A-7Tc¢)
can also be written 1n the form F = §C where C is the aerodynamic control
vector in the (1 , Vos n) system,AE Q.

CLS cosS db

c = ~CpS
_ (A7)
-CLS 31n:%5
the components of ¢ may or may not be varied independent of each other
depending upon the extent of the vehicle's aerodynamic configuration control.

A
The triad (g, H, ﬁ), however, is more convenient for resolving the
gravitational forces acting on the vehicle

. In this system,the gravitational
force*is given by
Gm
P = - ™% 2 (a-7e)

where G is the universal gravitational constant and mp is the planet's mass.

#* Assuming that all gravitation anomalies can be neglected due to their small
magnitudes relative to the other acceleration experienced by the vehicle
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Equation (A-7e) can also be written in the form F, = -m ( up/rz)g where
Hp is the planet gravitational constant (i.e., = G
A Ihe equatlons of motion will now be written in the (r N H n) and the
(1, V. fi) systems.

4.2 Equations of Motion in a Set of Orthogonal Axes Containing the Direction
of the Vertical a.nd the Normal to the Plane of Relative Motion

Consider the (2, H, %) triad consisting of the wnit radius vector, the
wnit heading vector, and the wnit vector normal to the plane of relative
motion. This system is illustrated in the plane of relative motion in the
diagram below.

N
r

A .

VpeT | ¥l sinY v
A /

Vp o H = | KR' cos ¥ = u (1-8)
A

YR.' n 0 0

where u, v are the horizontal and vertical components of the relative velocity
vector. But the 1nv;rse of the transformation (A-5) implies that the relative
velocity in the (T, E, i) coordinate system is
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A
Vo T v v
A .
v, . F = T.L(90-) u = u sin ¥
- x (A-9a)
V. . ﬁ 0 u cos ¥ 8
-R
- - L - L -
since the transpose of an orthogonal matrix is the same as the 1nver§e A
Further, the components of the relative velocity vector in the (r, B, n
system are also given by
A _ dr = dh
Ug?) = & dt (4-9)
A
(ER_' E) = rcosl g% (A-9¢)
A dL
(V, * N = p == -
iR ) dt (1-94)
Thus, equation (A-9) can be rewritten in scalar form as follows
dh _ .
T v (A-10a)
dr - usinyg
&  recosL (4-10b)
aL. - ucosYy (a-10c)
dt r
N
But, the (T, H, N) triad is rotating with respect to the (x}31 8z) system.
Let w, denote this relative angular velocity and let the co ponents due to the

rotational rates be %%,'g%, and‘g% . That is,

# This formulation assumes that the planet is spherical to an acceptable
degree of approximation.
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i

dA\ A ('Q_I.J A (-@) A
®, = (dt) Zpt d‘b) E+\ gl T (a-11)

This summation is illustrated in the diagram below

N>

() R

i

Now, the equations (A-3), (A-5, and (A-10a, b, c) transform this vector as
follows

= (9N 4 dy \ 4 dx . dL A
w4 (EE sinL. - a{) r + (d"c: cosI. siny +E£ cosll_l) n  (A-12)

This equation can now be employed to define the acceleration in the (r, H, n)
system as

_ (dula (V4
Ap = (dt)r+<dt)H+glx\_7R (A-13)
where V is given by equation (A-9a). Thus, substitution of equation (A-12)

for (_n__l—rinto (A-13) yields

_d_V__u2 A [dupuv) A v avy A
Ag = (dt r) r+(dt 7 ) B+ {r tanL sin¢g -u g4 n (a-14)
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The final step in the derivation of the equations of motion in the
(r, H n) system requires that the other mertlal acceleration terms in
equation (A-2) be evaluated. Since w_ = w, ZR then by using the trans-

formations (A-3) and (A-5) “

A
@, = (wpsinL)f-\+(wpcosL cos:,[r)H+(wpcosL sinlll)ﬁ (A-15)

The cross product terms in equation (A-2) when expanded become

s>

?g)px_\[R= [-2u (wpcosL sinlll)]

>

+ [2v (wpcosL sintp)]

(A-16
+[2u (wpsinL)—.’Zv(wpcosL costﬁ)]ﬁ )
and
o x(w xr)= (-r wzcoszL ) 7
p p

A

+ (r cop2 sinl. cos¢ <cosy ) H
2 8inl cosL siny )R (A-17)

+
(r w5

Adding the accelerations (A-14), (A-16), and (A-17) gives the total inertial
acceleration of the mass particle. Multiplying this by m, and equatnng the
roguct to the summation of forces acting on the particle (resolved in the

¥, H, n system) then yields the following scalar equations of motion:

o
LcosdJB cosY ~Dsin¥Y -m | 5}=
r

(4-18a)

HE

& 2 2 2
L -2u(wp005Lsm¢/)—rwp cos“L
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- DecosyY -1 cosd)B siny

du  w + 2v ( cos L,
= ) (53]
= m dt + rz v p

siny ) + r W,

dys

i = “ fanL siny - ) + 2
—Ls:I.nrl}3 m}ouj, at

2
-2v (wp cosL cos s )+r-o.)p

where

J
It
MW=

ciSp (U2 + v2)

: C\Sp (u? + v<)

dh _

a ~ Vv

dA = u sinyg

dt r cos L

dd_ u cos¥

dt r

P = p(n)
97

] g

2 sinL cosL cost,ér‘] (aA-18b)

u(&)D sin 1, )

sinl, coslL sintll] (a-18c)

(4-19)

(2-20)

(a-21)
(A-22)

(a-23)

(A-24)



r =Ty + h (a~25)

Where rp is the planet radius and h is the altitude above the planet surface.

A.3 Eguations of Motion in a Set of Orthogonal Axes Containing the Relative
Velocity Vector and the Normal to the Plane of Relative Motion

Consider the (! , V., A) triad consisting of the unit normal to the
relative velocity vector in the plane of relative motion, the unit relative
velocity vector, and the wnit normal to the plane of relative moticn. This
system is illustrated in the plane of relative motion in the diagram below.

) v
A “R
===

Planet Surface

In this system the relative velocity vector is

.5 0 0
Vp o 4
A _ v = v
Ve © Vg | 7\ R (4-26)
A 0 0
Vp * 1

Thus, using the inverse of the transformation (4-5) and (A-6), the relative
velocity in the (F, E, ) coordinate system is obtained

] - o1 T T
v . % 0 V_sinVY
“R
N~ o Tion o) T X = |V_ cosY siny (A-27
v, - E | = Ty G0-0T;0) T R )
~
YR - N 0 VR cosY cosi
1L - - - - -
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Substituting equations (A-9b, ¢, d) for the left side of this expression now
enables eguation (A-27) to be written in the scalar form

g{l = Vg siny (A-28a)
cos Y

g—fj _ Vg cos I‘coslll (A-28b)

dA  _ Vg cos¥Y sinys (a-28c)

dt r cos L

A A
At this point, the angular velocity of the (U1, Vr’ i) triad with respect to
the (xg, ¥g, zR) system, denoted by w, is introduced as:

w, =(3—t)gr+(_éé)%+(’.§f)9«+(_§{)ﬁ (A-29)

Thus emplying the transformations (4-3), (4-5), and (A-6) enables this vector
to be resolved in the ( I, ¥ - n) system as

dA v ) A
= - i - )4
w 2 [( at sinlL qt cos r

s

+ li%{-l‘ cosl. sin ¥ + 4L cosy¥Y - }'E (2-30)

This expression will now be substltutedAmto the equa‘blon for the acceleration
of the point mass relative to the (f Vys n) system, i.e.
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( PN
Ap = ( VR + sz‘i}? (4-31)

to yield

dY _ VR cos? N dVp ) A
= =e- 2 2ml 1+l =
A, VR (dt r dt VR

r

Vg cos ¥ d
+ Vg cos)’( B2 tanl sing - d—f) A (a-32)

where the expressions (A-28b) and (A-28c) were substituted for %)l and 9L R
respectively. To write the equations of motion (A-2) in terms o¥‘ vectors
resolved in the ( f ,V s ’ﬁ) system it remains to evaluate the acceleration
terms in (A-2) due to the planet's rotation. From equations (4-16) and
(4-17) these terms are

2w, xVp+ w x (W, xr)=

p

i A
L—ZVR wocosL sin ¢ —erZ (cosZL cos ¥ + sinl. cosL cos ¥ siny )| A

A
21 sin ¥ +sinL cosL cos Y cos)’)]V

2
tl-rw { cos B

| I

2

1 a
+12 Vg w, (sinL cos ¥ - cosL cos ¥ sin ¥ ) + rw ® sinL cosL sin l[l} n

(4-33)
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Thus, adding the accelerations (A-32) ang (A;33) gives the total inertial
acceleration vector resolved in the (! ,V_, n) system and multiplication
of this acceleration by m and equating the product to the summation of

forces (also resolved in this system) yields the following scalar equations
of motion,

Ko P -4 cos ¥ :
Lcosq.'>B -m r2, cosY = m "'e\at - VR r ~2VprcosL siny
+r wp2 (cos?L cos ¥ + sin L cos L cos ¥ sin )’)
(a-342)
4 dV 2 ]
- D - m< l—l‘%) siny = m[—-t—R + rwnz (sinl. cos k. cos¥ cos¥Y - cos L sin Y )}
d X
r
(A~34D)
'R cos ¥ A P V_ (sinL cos Y
-~ L sind)B = m| Vp cos¥| ~————— tanL siny ~ 5t wp Vp (sin
~cosL cosy sinY ) + rw < sinl cosL sinlb} (A-34e)
Y
where
2
2
n=1 CpS p Vp (A-36)
dh _ s -
Gr = Vg sinY (4-37)
d\ = Vg cos ¥V si;n_ll’ (a-38)
av r cos L
dp = Vg cos Y cos ¥ A
oy = (a-39)
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p = p(h) , (4-40)

r = rr‘ + h ) (A—l;l)
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APPENDIX B ATMOSPHERIC MODELS

Several standard earth atmosphere models are used in entry performance
and guidance studies. Among these are the 1959 ARDC model, the 1962 U. S.
Standard Atmosphere, and the 1963 Patrick AFB Reference Atmosphere. These
models consist of numerical tabulations of the properties (pressure, density,
temperature, mean molecular weight, etc.) as functions of either geopotential
or geocentric altitude. However, to obtain approximate closed-form flight
path solutions for use in an explicit guidance scheme or to reduce the two
equations of motion in the local horizontal and vertical directions to a
single differential equation for fast-time integration guidance, some simple
mathematical relation between atmospheric density and altitude is necessary.
This simplification results because the aerodynamic forces can then be related
to altitude at any time thereby facilitating the integration. Unfortunately,
there is no simple mathematical relation between these two variables which
is exact; however, for the major portion of the atmosphere the fact that the
variations in atmospheric temperature and molecular weight with altitude are
small as compared to the variation in density, enables a simple approximate
density-altitude relation to be derived with more than sufficient accuracy
for the purpose it serves. This derivation can be accomplished by examination
of the distribution of molecular energy in the gas, or from considerations of
static equilibrium of the gas as a continuum. The latter approach is chosen
here.

Consider an infinitesimal vertical column of gas having mass m, in static
equilibrium, where the horizontal surface area of the column is A; the volume,
dV; and height, dh. The gravitational force acting on the column in the
vertical direction is given by -mg, where g is the local value of gravitational
acceleration. The pressure differential between the bottom and top of the
colum is given by dp and the pressure force in the vertical direction by -Adp.
To be in static equilibrium, the sum of these forces must be zero, thus
Adp = -mg. Now, if p denotes the mean density of the gas in the colum, the
equation of equilibrium can be written in the form dp = p g dh (m = p Adh).

In order to help integrate this equation the differential form of the equation
of state must be used. Since p = PRT/M, then by taking the logarithm of both
sides and differentiating, the form obtained is:

dp _ dp 4 dT - dM
p p T %
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where T is the absolute gas temperature, M, the gas mean molecular weight, and
R, the universal gas constant. By neglecting the variations in gas temperature
and mean molecular weight in comparison tc the variation in density, the
differential equation of state becomes dp = E%{L.. Thus, substituting this
expression for dp in the static equilibrium egtation and using the original
form of the equation of state for a gas yields

do - _ 24 gn
p

The term£ M }in this differential form is constant, since the temperature and
molecular, weight variations with altitude are neglected. Therefore, this
equation can be integrated, with the result being the desired relation between
density and altitude, i.e.

in (f_) = - fh B-1

In this equation the density value at the planet surface is denoted by p, ,
and p = gM/RT. Another form of the density-altitude equation often used is

p = p exp(-Bh) B-2a

The notation exp followed by a quantity in parentheses means e( ) , where e
is the base of natural logarithms. The inverse relation of B-2a from B-1 is

A}

h=-é— 1n ([,’—O) = é 1n (ﬁ) B-2b

The term 1/ is called the atmospheric scale height and is the altitude at
which the density ration £ is equal to e~l, Denoting this altitude by the
symbol hS’ then enables BX2b to be rewritten as

P
h = hg 1In (7$ ) B-2¢
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The validity of this simple mathematical relation for the earth's atmosphere
is shown in Reference 1. In addition to the deviation in density from this
model due to changes in the gas temperature and molecular weight, there are
seasonal, daily, and latitude variations of density. The extent of these
variations are discussed in many papers (e.g., Reference 2 and 3). These
variations and uncertainties in atmospheric density are dominant factors
in the adoption of a closed-loop approach to atmospheric flight guidance.
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APPENDTX C

APPROXIMATE INTEGRALS OF THE MOTION

FOR VARIOUS FLIGHT MODES

C.1 The Equilibrium Glide Solutions

By far the most useful of the closed form flight path solutions available
for entry guidance is the equilibrium glide solution. Not only is this solution
useful for performance prediction, but it is also important as a nominal tra-
Jctory for linear perturbation guidance approach (see Reference 9) as a
terminating condition for other flight paths, and as an indication of the
flight envelope control 1limit. An understanding of the equilibrium glide also
provides more insight into the dynamics of atmospheric entry than any other
solution. The phrase "equilibrium glide" is derived from the fact that the
trag'ectory is the solution for which the centrifugal acceleration component
(-V=/r) of the vehicle balances the resultant acceleration of the vertical¥
forces acting on the vehicle, i.e.,

- V2

L
== cosd, ~g c-1
r n B p

where gp = ,up/rp.

In a sense, this path is an extension of the Keplerian flight solution
where the aerodynamic 1ift force is used to counterbalance the centrifugal
and gravitational accelerations at velocities other than circular orbit
veloeity. For velocities less than circular, positive 1ift must be applied
(cos ¢ >0); for velocities greater than circular, negative 1ift must be
used (cos 4>B< 0) for this solution. For atmospheric flight at circular
velocity, Zéro 1lift is required to fly an equilibrium glide (cos ¢, = 0).
Thus, if fixed aerodynamic coefficients are assumed during the gli%e s a
family of equilibrium trajectories with bank angle as a parameter is established
and equation (G-1) can be written in terms of a dynamic pressure-velocity
relation, as

A
¥ In the diagram of Figure 2, the £ direction.
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mg
- P %2
) v (CL S cos éB)E
where V = —
et
r
Solving for the density, yields
- 2m 1 1-7°
p = - -2 c-3
(€S cos &g p v
Thus, the altitude, from the exponential atmospheric model (1.7¢c) is
(CL S cos ¢B)E < *v2 )
h =hg In 2 m P e \] _ 32 C-L4

Tt can be shown from analysis of the altitude-velocity relation (C-4), that as
velocity decreases, the glide altitude increases for V __:> 1, and decreases for
V<1, assuming a fixed value for the term (C.S cos ¢). Also, as the velocity
approaches the circular value from either dlrgctlon %he glide altitude approaches
a theoretically infinite value.

This altitude-velocity relation is illustrated in Figure C-1 for several
values of the wvertical 1ift parameter (C S cos ¢_). The region to the right
of the circular velocity line requires negatlve f?ft to maintain "equilibrium,"
the region to the left, positive 1ift. The maximum altitude equilibrium glide
lines are the lines for maximum C. S in both regions, where in the subcircular
velocity realm cos ¢, = 1, and in the supercircular, cos ¢, = -1. The regions
above these lines indicate the flight regime where the dynamic pressure is
insufficient for the vehicle to maintain an equilibrium glide conditicn regard-
less of the aerodynamic 1ift commanded.

In the supercircular velocity realm this region corresponds to positive
flight path angular rates; in the subcircular realm, negative flight path
angular rates, Thus, this is the region where insufficient 1ift exists to
maintain constant altitude flight, or for that matter, flight at any constant
or slowly-varying flight path angle. The maximum altitude equilibrium glide
solutions, therefore, provide a good indication of the limits of control for
the vehicle, and a convenient terminating condition for the remainder of the
closed form flight path solutions yet to be developed. -
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Zero Lift

Figure C1 The FEguilibrium Glide Solutions on
an Altitude vs. Nondimensional Velocity Plot
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Figure C2 illustrates these closed form solutions eminating from a point
within the flight envelope, and terminating on the maximum 1ift subeircular
glide 1ine. A supercircular glide line could have been used instead, if
climbing flight paths in the supercircular realm are desired. In either case,
the maximum 1ift lines are used to indicate the limits of the controllable
flight regime. For guidance applications which require increased flexibility
jn the choice of the final objectives any one of the family of equilibrium
glide trajectories can be used as a segment of the flight path.

Some performance prediction equations useful for determining the terminal
point of the solutions mentioned are now considered. From (C-2) the accel-
eration along the velocity axes for the equilibrium glide is

¢, S .
W (D) g a-7
dt Cr,S cos(;/JB - P
. gP -2
S . o5
(5 cos¢>B>E

and the aerodynamic load factor and heat transfer rate are from (C-2), (2.1.8),
and (2.1.15)

Cp
G = 2
1-7
C coS ('bB E ( ) 0_6
c
di - H 3/2 ) T
& = - 3 v - -
dt (Cp, cos ¢ )i MEp Tp (Vv -7) c-7

The predicted altitude rate, h, is determined with the aid of the chain rule
for derivatives, i.e.,

dh = (dn) (dp) gU
at (-dp)(ag) dt c-8
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FLIGHT ENVELOPE

Figure C2 The Use of the Fguilibrium Glide Solution as a
Terminating Condition for Other Flight Paths



Substituting the exponential atmosphere yields

dp = -8
dh B e 6-9
Thus employing the definition
dp _ dp 4
dav 4v av
- 4m 1 (_1_)
- il 3/2 3 C-10
(¢, S cos &)y g2 Tp / V3

and substituting into equation (C-8) yields the relation between altitude rate
and velocity as

1

L -g-i (%> c-11

dt \i -
(% cos ¢B>E rp2

Thus, the predicted flight path angle (sin ¥ = h/V) satisfies

l") Cc-12
52

Finally, the surface arc range traversed along an equilibrium glide line is
obtained as follows:

First v

- id
V‘.
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Now substituting for %% from equation (C-5) and integrating yields

2
1 -V,
_ L i
R= = —_—
b cos s g TP 1n ( . Vtz ) _ c-13

where the subscripts "i" and -"t" indicate the initial and terminating values,
respectively. Egquation (C-13) is a prediction of the surface-arc range
traversed by a vehicle having an effective L value in the vertical plane by
given by (% cos ¢B)E along an equilibrium glide path for the velocity ra ge
between V; and Vi.

C.2 The Linear Variation of Aerodynamic Load Factor with Velocity Solution

The second integrable flight path to be considered for performance
prediction is the solution for which the rate of change of aerodynamic load
factor with velocity is constant, i.e.,

dG
av = constant C-14

A special case of this solution occurs when this constant is zero. In this
instance the solution reduces to a constant aerodynamic load factor flight
path. Because of the wide application of this constant G solution, the
prediction equations for constant G are also given, following the more
general solution. If the load factor and wvelocity at the start of this
flight phase are denoted by the symbols G, and V.. Integration of (C-14)
relates a linear variation of aerodynamiclload fictor to velocity as

e
G-G=qv -7

or

dG v G\ .
= Gi’ constant G C-15b
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Once again, constant aerodynamic force coefficients are assumed; thus, the
dynamic pressure variation with velocity is also linear, since from (c-15a)

q= Xp dG (mg dc
q= G, - v Vs;) + =z -
CyS (G, - gy o, C§§> o v C-16a
m
= Mp Gy constant G C-16b
CgS )
Similarly, the drag acceleration is
av. _ C dG Cp dG
= = — 8 B, -E v, - “p 4=
dt P Cq € -qv 0 (gp Cr dV) M C-17a
Cp
= -8 o G; _constant G C-17b
C 1,
R
And the atmospheric density as a function of velocity from (C-1l6a) is
2
o - ——zngp(ci-g—%v)% +<_“lg_19§%)l .
= CRS i CR v C-18a
_ *mep Gy \ L.
= —_— ” 2 constant G C-18b
CgrS Ve
Also the altitude-velocity relation from (B-2¢) and (C-18b) is
f-h In [( CrSh, ) v2 ]
= 4G dG
S aG .0 als -
“nep (65 - v i)+ (@) ¥ o-i%a
C-19b

Cp S
RS p
= hg 1n[(—"—‘—9-——

2mgp

2
) G. ] constant G
1 2
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Tn the same manner, the predicted aerodynamic heat transfer rate from (2.1.8)
and (C-l6a) is

aH = C dG C ole :
== H = H @& C~-20a
dt "ep Ty (Gi -qv Vy) v +(mgp Ty dV) V2

- Cq

= mg, S Gy V , constant G Cc-20b

Since the altitude rate can be written using the chain rule for derivatives
as

dh _ dh gy

dt ~ dv dt

where by differentiating the altitude-velocity expression (C-19a) with respect
to velocity,

c-21

Substituting (C-21) and the drag-acceleration expression (C-18a) into the
altitude rate expression then yields .

- c
v avll. . 2 ¢
dh = Ing G € “R
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A B
= —\d gp hs Tgr Ui) constant G

But, the sine of the flight path angle is (k/V), thus from (C-22)

Cp dG 1 Cp dc\i
sinY = -2 &p hs CR (Gl - 4V i) V2 —(Ep hS CR avjv
” N Cp G 1
I CR 1 V2 constant G

C-23b

The computation of the bank angle reguired to fly a linear variation of

load factor with velocity, with constant aerodynamic coefficients, is

accomplished by differentiating the expression for the flight path angle

(2.38a) with respect to velocity. Thus, since cos?¥ =1,

c dG
avy 2D =z 1 C dG 1
A h 3 - V. D =\
av gp s CR ( i av 1 ) V; + (gp hs CR av V2

C-24

The vertical acceleration term, (V %%), required to fly this path can now be

expanded in the form
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Thus, substituting (C-24) for dy and (C-17a) for g% yields the flight path
vertical acceleration term as av d

dy CD) dG 1 (dG 1 c
V3=V h., — R e T =) = D
dt (gp s 5 [ 4 (Gl av 1) v3 T dV) V2 2 ol

R

c 4G 1 dc) 1
2 D = y.) == =) £ !G
=-8, I ('c‘g) [h (Gi = dv Vl) e Tt (dV) v] c-25

Next, substituting the expression (C-25) for V dY into the equation of motion
(2.2.2) and solving for the cosine of the bank gﬁgle yields:

yR v av
1-=>— ) +
gp< . rp) it

Q

cos ¢

- C
L
c, &p © C-26a
c (1 = _2) ,
- o e/ — g n (?P.XCB (o, _€0\L (a5) L
1o 4qy 17 av
Cp 1 V2 N ¢, ©p G) 1
= o lt-==)-\¢ ~ Cn 2.
CL Gl < VCZ> ( gp S CL CR 1 v constant G
C-26b
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The terminating condition can be determined from a limiting value of
the bank angle or, as will be done here, the intersection of the flight path
with an eguilibrium glide line¥*, 1In most cases, the bank angle limit is
the more complex solution. This fact can be shown by solving for velocity
in (C-26a) when cos ¢, is given a fixed limiting value. The general solution
is determined in this case by finding the roots of a fifth order polynominal.
Terminating on an equilibrium glide line, however, has two advantages: first,
the glide line may be used as the next flight phase, and second, the solution
for the terminating velocity, in most cases, is no more complicated than
solving a quadratic equation, Since the altitudes and velocities must be
identical at the point of intersection of the two flight paths, the terminating
conditions may be determined by equating the altitude-velocity relations
for these paths. At the intersection of the constant dG/dV and the equilibrium
glide paths, the expressions (C-4) and (C-19a) must have identical values, thus,

(C, S cos ¢ )Yﬂ 5 C S p vé S
= Zn Sl rP(Ij-?r?)= Egg";o'— (Gi i%%)%%%)"

Thus, arranging the terms in standard quadratic form yields

i
O

@L S cos¢B)E (QQ) v - (CLS cosqbﬁ)}3 (Gl ae

VT4 Cp S dv “r v "1

Cc-27

Now, the termlnatlng veloc1ty r%tlo is one of the roots of a quadratic equation,
ie., V, = = —(b/2) + & (b® - L4e)3, where

(C S cos¢ .)p (dg)vc
. g

Cr S cosd) dG
(L_ %E (Gi_de -1
c=

Since the terminating ve1001ty ratio V., is always positive, only real roots
are acceptable. Thus, b2 > he, otherwise, the flight paths do not intersect.

#In most cases a subcircular glide line.
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For the special case where dG/dV = 0O, the solution for the terminating velocity

ratio from (C-27) yields

(CL S cos B)E

np~

= C

G4 * Constant G C-28

Finally, the surface arc range traversed is calculated by substituting
the expression (2.322) for dV/dt into the surface arc integral (2.15), and

integrating, that is,

v, Vg
J‘ vV av cg 1 J‘ Vv
R = C - T &
D D ©p dG db
—-—gG) (G -—-V)+(“V
P i i
v, oy g av av
C-29%9a
Vs
CR 11 v dv
p (4G
‘D (dV)
Vi
A1
t
C da
_ EE §~ %5 [:V - aln (a + V} 3 for dv 7 0 C-29b
D &p (EV,) vy

where

dv

g (o

Substituting the limits Vi, Vt into the integrated range expression gives
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CR 1 1 a+ Vg
1 E —— dG C-30
— o ., - -+ - =27 (0]
R D gp (33) (Vl V't) a 1ln a + Vi ; for v 74

For the special case where dG/dV = O, these expressions are not valid since
division by zero is not defined. Therefore, another range integration must
be made to determine the constant load factor flight path. From Equation
(C-29a) the constant G surface-arc range expression becomes

Ve
°r 1 j'
R =~ CD gp Gi vV dv
Vi
YR 2
L (V2 - V,) . Constant G Cc-31
D &, 0;

Thus, it is possible to predict the surface arc ranges traversed for as a
function of the initial and final velocities.

C.3 The Constant Altitude Rate Solution

The third integrable flight path to be considered for performance pre-
diction is the constant altitude rate solution, i.e., the path having

dh
at = constant

This solution includes the special case in which the altitude rate is zero,
(i.e., a constant altitude path). The integration can be performed with
respect to time or velocity; however, since velocity is more indicative of
the vehicle's range capability the integration will be performed with respect
to velocity. Fixed aerodynamic coefficients are once again assumed.

120



The first step in the solution is the development of the relation between
the atmospheric density and vehicle's velocity for this flight path. This
relation can be found in a form enabling the variables to be separated using
the chain rule as:

dp- =(%hg) (%’E) (%:’7) dv

- (-Bp) (fo(ﬁl/;) av

c-33

2mf3 h) av
Cp S 2

At this point, an exponential atmosphere relation is substituted for (dp /dh),
(2.1) is substituted for (dV/dt) and ¢-33 is integrated from the initial
conditions (P1i, Vi) to the values ( p, V) to yield the relation

. v
P - Ps = ,2£ﬁ£ l
1 CDS v
v,
i
_2mBh (l_- 1
p=(p + BB 1 L) (?.ﬂ_,@__ 1
i CpS Vi - CD S v C-3Lka
which for the case ﬁ = 0 reduces to
p = p
hi C-34b
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Since the initial density, p,, cannot be measured directly, a relation between
it and the initial load factdr can be used to write the prediction equations.
in terms of the initial conditions (Gi’ V;). Thus, solving the equation for
G for p; yields

- 2m G4
p, = £L. ¢ Gi_

oo (P2e G 2TPOG ) (2m6R)1  cow
or
_ 2imep Gy h= 0
CRS Vi ’
C-3Le

Thus, the dynamic pressure for constant altitude rate can be obtained as

-_(m_gp_ ¢4, mBh 1_) - (mBh)
a=\cgs V2 cps vy) VU o-\gE ) Vo 35
Gi 2
= =2p_ I v
(:s 7?)

the drag acceleration,
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C G :
= D
i C=36a
_ ( Cp Gy ) s 3 h=0_ Cc-36b
=-(ep 5= T v —_—
R Vi
the aerodynamic load factor as
_(f Cr Bh) 2 _ e g n v
G = z t v c
\ Vi D i “D
L C-37a
\
i a
| _ ;‘;_.) - :
v 2 2 h=20 C-37b
§ i
and heat transfer rate as
; dH c Gj c mBh C .
ans - H i + H ME2 ) y3 H e
T e (n BB om e o (Baesd)
~ CR V52 Cp i ‘D
C-38a
C G, .
_H 1 4 = -
= (E;p - {,‘jz) V3 ;5 h=0_ C-38b
R 1
The altitude-velocity relation for constant altitude rate can now be
obtained as from (C-34d) and (B-2c)
CoS
R ) v
( 2m Po
h = hg 1n C-3%a
(gG_i_+Ea M)_(E@Bg)
P V2 ‘o vy ®p
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h = hy h=0 -39

Similarlv. since the sine of the flicht path angle is simplv sin?Y = h/% the
arly, since the sine ol The 111ght path angle 1s simply sin n/v, tne
flight path angular rate is found to be
dy _ ( _ h_\) gl
dt V2 dt
h c, G :
D i Bh 2
= (- VZ) - - — + ) i + ( Bh) Vv
- 4
Cp Gy - 2 . c-39¢
_ ( o 2 & n+ BES) _ (gpa) L
"PCR V4 Vi v

where cos ¥ = 1 and where Equation (C-36a) was substituted for dV/dt.

These equations can now be used to develop the control low for the
descent. First, the cosine of the bank angle required to fly the constant
altitude rate flight path is found by substituting (C-39¢) into (C-25a), i.e.,

gpTp CR Vi2 Vi
ens qu = N
(2]
2 Cp Gi + 1.’12 2 2
Ve - Co T h Brp V—-—)V'\‘-(Brph -Vc)
R Vi i
cos d)B =
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where (L/m) = (CL/CR)ng, and (C-37a) is substituted for G. Thus, the
bank angle scheduling for constant altitude rate is seen to be the quotient
of two velocity polynomials. Next, the terminating velocity for the
constant altitude rate solution is found by its intersection with an equi-
librium glide line, At this point, the altitude-velocity relations (C-4)
and (C-39a) must be identical in values, i.e.,

CnS
CrS
(CLS cos ¢B)E _{72 2m p() v
2m ot T-W T TG 9_11@_5_>V‘<EP—‘BY'1>
(20 72" © v, N

Thus, rewriting this equation in the standard quadratic form allows the
following equation to be prepared

Now, the terminating velocity ratio Vt is a root of (C-40), i.e.,

1
_ -b+ (b2 -4 ac)2
Vy = 2a

where
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For the case where b2<24ac, the flight paths cannot intersect and no solution
exists. The terminal velocity ratio for the constant altitude flight path is
shown from (C-40) to satisfy the identity,

[l

l . — ———
-‘}t = (€, S cos ¢g )=z Gj__
1+ 5
CR S V’ .
1

constant altitude C-41

Finally, the surface arc range traversed along the constant altitude rate
flight path is caleculated by substituting the expression (C-36éa) for dV/dt into
the surface arc integral and integrating

Vi R
Vi
_ f av
A-BV
Vi Vt Vi
1 C~42
— - 1In(A-BYV) = 5 Iln(A-BV)
vy Vi
where .
A= B h
5 Cp Gy . Bh
—4 g -_— e .
P Cp V4R vy
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Thus, substitution of the limits into the expression C-42 yields the surface arc
range as

R = L in 1
T : C v : v v
(g Cp G éh) (_E A &b)(_t_ ) + C-L3a
P Cp V32 Vi Cp Gy €o Vi
cp V2 Vs '

1 %r Vi Ji h=0 C-43b
=% O = In |7

°P Gy t

Equations (C-43) estimate the surface arc range traversed by the vehicle along
a constant attitude rate flight path from initial velocity, V., to final
velocity Vt' *

C.L The Constant Flight Path Angle Solution

The fourth integrable flight path to be developed for performance prediction
is the constant flight path angle solution, i.e., the path having

Y = constant C-Li

The first step, as before, is the development of the relation between the
differential density change (d p) and a differential velocity change (dV)
by employing the chain rule

dp =(§§)(§%> (fi%) av
= (-Bp) (Vsiny) (-ED——%--mp—Vz-) av

C-45

<+

(2 B msinVY
CDS
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But this differential equation can be integrated from the initial conditions
( pyis V.) to the values (p, V) to yield the constant ¥ flight path density-
veldcity relation,

2Bmsiny 44, ( L)

2 m sin Y v
_ﬁ.r.__.__ 1 ( \7") C-L6b
po= ot D 1

But, the density is not a direct measurement, thus, the injtial density is
given as a function of the initial load factor from Equation (C-24e) as

2m Gs i
p = (——-gﬁ = ) + (2—'%"1!1'312‘)“/‘) 1n (“;—) C-47

This equation can now be employed to yield the predicted dynamic pressure
for this flight phase as

mg G
T = —- J.) (_BmS_l_nV v
¢ (CR ;2! 2o+ g s“) V2 1n (;,1) C-48
The drag acceleration, (from (2.28)) as
Ch S -
v .2 q
dt m
Cp G. ) v -
i 2 . 2 K C-49
= _| — v« - ( siny ) VS 1n ( >
(& & 72 B A
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The aerodynamic load factor, and heat transfer rate equations (2.2.8) as

0. c
R B si v
G::(lz) V2 + (E’ B sin ¥ ) Ve hl(gﬂ C-50
vy D gp i
dH _ v
3t CysS q

Cy Gy o v c-51
= (‘“ mg =3 ) V3 + ( _H B msiny v3 1 (——

Cr p Vy Cp n vy
and the altitude-velocity relation from B-Z2c as

G
(C_&S__ 0 -1—)
o 2
2m gp Vi
h = hs ln R I _
c -
«E _ﬁ_ﬂal;_) n (2_) C-52
+ N
1+\¢, B A

At this point, the control required can be found.

First, the cosine of
the bank angle is obtained from (2.2.2) as

Zp (1 -7V2) (1 - V)

) — _ e
coS¢B = (m) Uﬁ G
Cc-53

_ ] 1-7

C - C r - v

G ) (2 o) (]

Cg Cp s vy
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Next, it is noted that the terminating velocity for the constant flight path
angle solution is determined by the intersection of this path with an equilibrium
glide line. This intersection in turn is obtained by matching the altitude-
velocity relations (C-4) and (C-52). That is,

| CRs G
- =—- 5 Po
Cus _soodp Jo, () | - s T SR
2m °©o 'p \1-72 (C .
) +(FE B _§_111..X._) m L
‘D %p vy

In contrast to previous solutions, an explicit solution for the terminal
velocity is not possible. Therefore, an iterative procedure must be used.
This iteration is facilitated, however, if the equation is rearranged in
the form

(CL,S cos &, ) V2 C - v =
T T s et “"1—‘ 1+ - 'B""il‘{l‘}"‘ in <—t) + 1 C-54

= Vs
Vt = CR S G4 p i

This form of the solution is referred to as the method of false position. A
first guess of V., is made by assuming sin ¥ = 0 and solving for V{; then the
iteration continfies wntil convergence occurs,

Finally, the surface arc range traversed along the constant flight path
angle solution is calculated by substituting the expression (C-49) for
dV/dt into the surface arc integral and integrating. This result is

Vy
R= - s C G - Vo
i 2
(_Q g —i—) V2+(Bsin)’ )V ln( _>
C p V.2 V.
Vi
= dvVv L
v
Vv a + b 1n (.__)
v, Vi



1 v c-
R = b 1n [ a + b 1n V; >3
Vg
where
(2 5 %)
a=\fr &
CR P V._L

Substituion of the limits into (C-55) yields the predicted surface arc range
as a function of the initial and final velocities, i.e.,

1
——=-— 1In
sin Y C sin Y
1+ (C—R - ~ vi2) 1n (—t) C-56

where h_ = 1/8 .
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C.5 ‘The Constant Velocity Transition Solution

In each of the closed form flight path solutions a relationship exists
between the variables of altitude, flight path angle, and velocity. However,
in general, the existing flight conditions will satisfy the closed form
relations for the desired path; as a consequence, the vehicle will not
instantaneously follow the desired path. Thus, a maneuver must be performed
prior to the time that the desired flight path is attained. That is, another
trajectory which starts at the existing point, (h, V, # ) and terminates at
a desired set of conditions (h, V, # ) must be commanded. Unfortunately, an
exact solution of the equations of motion which satisfies this two point
boundary value problem cannot be obtained; thus, it is necessary to make an
assumption which will allow the development of an analytic transition path.
This assumption is that the velocity of the vehicle is constant during the
transition maneuver.

Although no unpowered entry vehicle can satisfy this condition, the
integration performed with this assumption can predict the variation of altitude
rate as a function of altitude with sufficient accuracy to control the vehicle.
A comparison between this solution and the exact solution as integrated on an
analog computer is made in Reference 10. Since velocity is assumed constant
only the vertical 1lift acceleration equation (2.2.2) will_be integrated.
Further, the aerodynamic control vector component in the ! direction (i.e.,

C. S cos¢_ ) is assumed to be fixed during the maneuver. With these
assumptions, the common set of assumptions previously adopted, the vertical
acceleration equation can be integrated in closed form.

Equations (A - 18a) and (A - 34a) in Appendix A show that for small flight
path angles the acceleration term V 4¥'is approximately the same value as
the vertical acceleration d2h/dt=2. dt Thus, the equations of motion (2.2.2)
will be transformed using the chain rule, as

d2n d. ih_) _ 4 (Clh;) dh
at? | dt (dt. dh \dt/ gt
gh
= —_~ h
dh

With this substitution, the equation motion (2.2.2) can be written in a form
suitable for integration as

» V2
: dh L —_
h W om cos ﬁB g + - Cc-57

Multiply both sides of (-7 by the diffsrential altitude dh and substituting

the expression Cp S p, exp (- B h) VS for L then yields
2
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. s C., S cos ¢ V2
j h dh = f -——--———2——m——~-—-— A V2 exp (Bh) - g+ -| dh C-58

hl hl

where the subscripts 1 and 2 denote the initial and final values of the
constant velocity transition maneuver. Now, since velocity and the factor
C1, S cos ¢R are assumed constant, C-58 can be integrated to give

h
2
hy
n? _ 1 (GuS cosdy dopuyg 2
> = p, V< exp (-8 h)
B 2m h
2 c-59
n V2 h
1 o2 l
r
ny

whén the constant C. S cos QB has been subscrlpted to denote the transition
path. Substituting the 1limits into the expression (C-9) and rewriting then
gives a solution relating altitude rate with attitude for the maneuver, i.e.,

.2 .2
hy h (Ct S . cos o h
2 L
— - é__ = hs ) B TRANS PO V2 exp (_ __g) -
2 2m hg

C-60

exp (— %) + (g-\;f%> (hy, = hy)

where the scale altitude symbol h_, has been substituted for (1/8). Equation
C-60 relates the initial and finai attitude rate (hl h,) to the initial and
final altitudes (h h.) for a constant velocity maneuver with fixed control

(CL S cos ¢ )TRANS-

This relation can be used to control the vehicle by adjusting the velue of (CL
S cos QB ) from an existing point (h,, V, h.) to one of the closed form
flight path solutions already developed. However, to do this, it is convenient

to use (C-60) in another form,
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-h
hy h2 (C S cos cp )TPAN : hy 2
— = e + th - expi{- h
2 2 . s 2 m ]
y2 h c-61
- h (g - ) ._2
s r

where q, is the dynamic pressure at altitude h2.

If it is assumed that an equilibrium glide is desired, the tinal values
for the altitude, h,_, and altitude rate, h_, should correspond to the
corresponding valueS for that velocity used in the transition maneuver.

From (2.19), (2.26) and (2.17) the attitude, altitude rate and dynamic
pressure for the equilibrium glide are respectively

(C; S cosod, o o2
L ’B_'R v
= = H— e hand o C"'62a
hy =hg=h In 2m b Tr @ -7
Al . -2 h g
h =h = -.-—s.____ g__ ) J_' C_62b
2 B (TJ d> r ‘7
p cos Py ) P
- - mg =2
=9 = (L - V<) C-62c

(CLS cos qSB )E

Thus, subsituting the equilibrium glide expression for h_ and g, into C-61 yields
the relation between h and h for transition to an equlllgrlum gﬁde flight path:

2
'
2 _ g hy 1 v, ) h-ng
2 | —= Loy -1 m
(5 cos ¢p )R
S
(e °s ¢ )TPANS h - hy C-63
T 1 - exp( - —5)
(c. s cosgb) hg
B muiL
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where the subscript 1 is omitted for the sake of generality. Although equation
C-63 gives solutions in all four quadrants of the (h, h - hE) plane, only
solutions in the second and fourth cuadrants are valid since they represent
trajectories which approach the equilibrium glide solution (which is h = hE’

h - = 0). In the first and third quadrants the trajectories move away

from The desired solution to an equilibrium glide is shown in Figure C-3 for
several values of the maneuver velocity. In this sketch, the ratio of (CL S
cos Pn )TRANS (CL S cos ¢f5)EQUIL is assumed to be fixed.

In addition to its use as a control equation during a transition maneuver,
the constant velocity transition solution may also be used to determine the
upper and lower bounds for the vehicle's altitude rate for which the vehicle
can safely maneuver in the flight envelope. An upper bound, for the altitude
rate can be determined from C-63 as follows. Assume that full negative 1ift
is used during the transition maneuver to arrive at the maximum negative lift
equilibrium glide line. For altitude rates greater than the value computed
under condition C-63, the vehicle will not remain in the atmosphere, and a
skip-out is unavoidable. However, since some velocity is actually lost during
the maneuver, the solution for the limiting value of maximum altitude rate is
only approximate and may need to be bilased in a given application. The

expression for hLIM will be

increasing
velocity

increasing velocity

FIGURE C-3 PHASE PLANE PORTRAIT OF CONSTANT VELOCITY
TRANSITION MANEUVERS TO AN EQUILIBRTUM GLIDE
given here in terms of velocity and drag acceleration (2), (The drag
acceleration is used in this case in lieu of altitude, Bince it is usually
a more reliable measurement for entry guidance). This maximum altitude rate
limit is determined as follows:
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C-64

The positive root of the expression C-64 is taken for the maximum altitude
rate limit.

Similarly if the lower altitude boundaries of the flight envelopes are
employed, the lower bound for the altitude rate limit can be determined. This
lower altitude bound, for most vehicles, is fixed by either a maximum load
factor or a maximum aerodynamic heat transfer rate, depending on the wvehicle's
heat protection system, velocity, and other factors discussed in the vehicle/
crew limits section. The example given here is for the maximum load factor
limit, although the limit for maximum heat transfer rate can be found without
additional difficulty.

The transition maneuver required to attain a constant load factor trajectory
will be developed and then reduced to the limiting case. From equations C-196,
C-226, and C-166 the altitude, altitude rate, and dynamic pressure relations
for the constant load factor flight path are

C, S
= =~ 54 ~
N #) ¢-65a
C c, 1
h2 =hg = - (2 g hs EE G) v C-65b
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Thus, substituting the expressions into the constant velocity transition
solution C-61 yields the constant load factor transition solution,
2
C #
| R (_12 c) Lo lan (S, cos & Yopan h - hg
"'SCP n V2 s (CFS) 1'exP"T
¢ /s J
2
v -
_h< ___) (h hc-) C-66
g
s r h
5
the minimum value of altitude rate is now defined by using
coo g, =/
c
max Cp & M/ max
2 D
h -h - =
exp (- —T—G) = (’1)11335_ = h-hg 1n (TZLL_S_
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m Aaax m/pay
as substitutions into (C-66).
The result is:
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The negative root of h o’ calculated from the expression (C-67) is the lower
bound to be used. L

C.6 The Exoatmospheric Solution

The final closed form solution with application to entry guidance is the
exoatmospheric or Keplerian conic solution¥® developed in Reference 11. For
this case, the ballistic range expression and ballistic range sensitivities
to the exit conditions are given as a function of exit velocity and flight
path angle. Further, the conic motion integral yields the radial distance as
a function of the semi-latus rectum, eccentricity and true anomaly as

r = — P
1 +ecos@ Cc-68

The ballistic range angle 28' (see Figure C-4) is equal to twice the difference
between 180° and the true anomaly, 6 T,Solving (2.83) for the range angle
then gives EXI

1)1 Plroy

C-69

e

But, the semi-latus rectum is given by p = h2/,L , where h = (r V cos‘Y)EXIT;
thus, the ratio p/rEXIT can be written in the fo¥m,

p____. (I‘ V2 0052 Y \EX__[T

r
- EXIT Ho

C-70

= (V2 cos?
(V= cos< y )EXIT

% The 2-body solution has application only to those entry concepts employing
a controlled atmospheric exit. Thus, this concept is predicated on the
assumption that this type of operation is both feasible and satisfactory
from the standpoint of the mission.
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FIGURE C-4 BALLISTIC RANGE NOMENCLATURE

The relationship between the semi-latus rectum, the orbital energy, and
the eccentricity can now be written as 1

2

I h2 }
e = 1 +2 € ——
2
# 3
B V2 “P r2 V2 cos VY
e (Se) (2
! 2 _ EXIT
B v2 cos2}’
= {1+@%-2v3 ( v
C
B EXIT el
1
—2 — “
= 14+ (v - 2 008V )
[ Vogn = 2 (72 cos®y )E)C['T‘]
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where € denotes the energy per unit mass given by (v2/2 - 1 /r). Now,
substituting (C-70) and (C-71) into the ballistic range expression (C-69) yields

TR 2
(1 - V=% cos* Y )EX'[T

-1
20' = 2 cos ) %
[1 + (T2 - 2) (VR cos ¥ )]

5XIT c-72

The sensitivity of this range angle to errors in exit velocity and flight path
angle are derived by forming the partial derivatives as follows:

ey 2
( :} k, (1 -V )
----sz = 2Ky cos® ¥ 1+ 2 EXIT c-73a
2
(2 U k ( 2~V )
-0(26) _ _ 2ky cosY  pyqqp sInY TXTT [l + 2 BT C-73b
Y- h €
9 EXIT
where
2 VZFXIT
k, = 2%
1 2 _
e (1 -k, ) C-Tha
2
(Fogr )
Kk = _EBEXIT C-74b
2 e

and (C-70), (C-71) give (ﬁﬁ and "e", as functions of the exit velocity and
flight path angle.
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